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Abstract. This research systematically investigates the impact of porphyrin and chlorophyll dyes on  

Dye-Sensitized Solar Cells (DSSC) performance, aims to achieve maximum solar cell efficiency. This 

investigation involved the use of Fluorine-doped Tin Oxide (FTO) coating with TiO2–ZnO composite, 

incorporating Al doping, and introducing variations in the concentration of chlorophyll SP and porphyrin 

(2:2:0.1 and 2:2:0.2). Synthesis of Al-doped ZnO was carried out via the sol-gel method, which involves 

mixing and heating at 65°C, followed by degradation at 150°C. TiO2 and ZnO: Al composites were 

formed using the sonication method at 45°C for 60 minutes. This study evaluates the impact of dyes on 

the growth of TiO2 and ZnO: Al composites and examines their characteristics - including UV-Vis, band 

gap, current versus voltage curves, DSSC efficiency-using EDX, and FTIR analyses of solar cells.  

The DSSC efficiency testing utilizes a photon light source from a halogen lamp with an intensity of  
328-580 lux. The results showed that DSSC based on TiO2–ZnO: Al + chlorophyll produced an efficiency 

of 13.3%, while porphyrin (2:2:0.1) and (2:2:0.2) produced an efficiency of 8.9% and 13.9%, respectively. 

In conclusion, this study shows that adding dye to the TiO2–ZnO: Al composite significantly improves 

DSSC performance and shows optimal characteristics. The highest DSSC efficiency of 13.9% 

underscores the interdependence of absorber layer quality with photovoltaic performance, providing 

valuable insights for future solar cell design and optimization.  
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Introduction 

Solar cells operate on the fundamental 

principle of photovoltaic, harnessing the ability to 

convert light into electrical energy. The generation 
of Dye-Sensitized Solar Cells (DSSC) has 

significant advances in the field of solar cell 

materials [1]. DSSC efficiency has demonstrated 
remarkable progress, achieving levels of 11% [2] 

and 12.3% [3], particularly when utilizing TiO2 as 

the active material in the working electrode. 
Recent advancements have shown that 

employing SM315 porphyrin dye [4] with TiO2 as 

the semiconductor can further enhance power 

conversion efficiency, reaching an impressive 
13%. Despite TiO2's efficiency as a photo-catalyst 

[5-10], its limited surface area poses a challenge, 

resulting in relatively low adsorption of the  
photo-catalyst. Additionally, the higher cost of 

TiO2, compared to ZnO, has led researchers to 

explore ZnO as a viable alternative for the working 

electrode [11-15]. ZnO, an abundant natural 
element with an energy gap of 3.37 eV,  

is a justifiable substitute given its energy  

characteristics comparable to TiO2 (3.2 eV) [16]. 

Various materials, such as Ga, Sn, Mg, Al, 

and B, have been explored for doping to further 
optimize ZnO's physical, optical, and electrical 
properties [17]. Aluminium is a convenient choice  

for atomic doping [18-22] due to its smaller  

ionic radius compared to ZnO, which enhances  

the electrical conductivity of ZnO and presents  

a cost-effective alternative to other materials 

[23,24]. 
Considering these factors, the combination 

of TiO2 with ZnO emerges as a necessity  

for developing components with superior  
optical and electrical properties for  

photo-electronic applications [25]. This study 

introduces innovation by focusing on the 

composite TiO2–ZnO with Al doping [26].  
The sol-gel method, involving forming initial 

compounds (precursors) followed by drying  

and calcination, is employed for doping ZnO  
with Al. Additionally, the sonication method, 

utilizing ultrasonic waves with a frequency of  

20 kHz – 10 MHz, is adopted for manufacturing 

TiO2–ZnO: Al composites specifically tailored for 
solar cell applications. 
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Since TiO2 exhibits absorbance primarily in 
ultraviolet wavelengths, incorporating a sensitizer 

becomes imperative to extend its absorption 

spectrum into the visible light range [27].  
The objective of this study is to investigate  

the enhancement of sensitivity and efficiency  

through the utilization of porphyrin dye and 

chlorophyll extracted from Syzygium Paniculatum 
(S.P.) as sensitizers. The study aims to 

comprehensively compare the performance of 

these two sensitizers in enhancing sensitivity and 
efficiency. 

 

Experimental 

Materials 

This study utilized TiO2, ZnO, AlCl3,  

Al-doped ZnO, methanol, ethanol, NaOH, distilled 

water, iodine, KI, ethylene glycol (EG), carbon, 
chlorophyll from S.P. and porphyrin produced  

by HACH, Germany (Hach Method 8143 Range: 

2–210 μg/L Cu).  
Al-doped ZnO synthesis process via the sol-gel 

method 

The materials used included ZnO, methanol 

as a solvent, NaOH as a ligand, hexane for 
washing, and aluminium trichloride (AlCl3) as a 

dopant compound. One hundred grams of ZnO and 

80 mL of methanol were heated on a hotplate with 
a stirrer at 60°C for 15 minutes, resulting in 

percussion. Separately, one hundred grams of 

AlCl3 and 50 grams of NaOH were dissolved in 
200 mL methanol and heated on a hotplate with a 

stirrer at 60°C for 15 minutes. The heating 

percussion was carried out using a three-neck flask 

by slowly dripping the NaOH + AlCl3 + MeOH 
solution. Stirring continued at 65°C for  

180 minutes until the solution turned white.  

The solution was then allowed to stand for 48 hours 
until a white precipitate formed. The resultant 

mixture was washed with 10 mL hexane and 10 mL 

methanol to produce ZnO, which was then dried in 

an oven at 150°C for 8 hours, producing ZnO 
powder [28-30]. 

Mixing TiO2, ZnO: Al, and chlorophyll dye using 

the sonication method 
The materials used were nano TiO2,  

Al-doped ZnO, ethanol as a solvent, and distilled 

water. The process involved mixing with  
several variations and operating conditions at a 

temperature of 45°C, 70% amplitude on-off for  

20 minutes, as follows [31,32]. 

TiO2 powder (20 g), distilled water (15 mL), 
and (EG) (15 mL) were sonicated for 20 minutes 

until TiO2 was entirely dispersed. An addition of 

20 g of ZnO: Al was re-sonicated for 20 minutes,  
 

and 10 mL of chlorophyll was added and sonicated 
again for 20 minutes (TiO2–ZnO: Al + chlorophyll 

composite). 

TiO2 powder (20 g), distilled water (15 mL), 
and EG (15 mL) were sonicated for 20 minutes 

until TiO2 was entirely dispersed. An addition of 

20 g of ZnO: Al was re-sonicated for 20 minutes,  

1 mg of porphyrin was added and sonicated again 
for 20 minutes (TiO2–ZnO: Al + porphyrin 2: 2: 0.1 

composite).  

TiO2 powder (20 g), distilled water (15 mL), 
and EG (15 mL) were sonicated for 20 minutes 

until TiO2 was entirely dispersed. An addition of 

20 g ZnO: Al was re-sonicated for 20 minutes, and 

2 mg of chlorophyll was added and sonicated again 
for 20 minutes (TiO2–ZnO: Al + porphyrin 2: 2: 0.2 

composite).   

FTO coating with TiO2-ZnO composite doped with 
Al and dye using a spray gun for solar cell 

materials 

The FTO was cleaned using ethanol, and the 
process of deposition of the initiator layer  

(seed layer) on top of the FTO substrate was 

performed. The seed layer solution consists of 

TiO2, ZnO: Al + dye. Layer deposition was 
performed using a pressurized gun spray technique 

at 3.2 kg/cm2. The heating process was gradual, 

starting at 150°C and increasing to 250°C, aimed 
at facilitating the formation of the TiO2–ZnO: Al 

seed layer (photo-anode) crystals. 

Instruments 

Characterization was conducted using the 

Bruker Quantax X-Flash for Energy Dispersive  

X-ray Spectroscopy (EDX) testing and the Perkin 

Elmer Spectrum Two FT-IR Spectrometer for 
Fourier Transform Infrared (FTIR) analysis. 

Sample composition was determined via  

energy-dispersive X-ray (EDX) testing, which 
involves using X-rays to analyze the elemental 

composition of materials. The purpose of  

EDX testing is to determine the composition of a 

sample by providing information about the 
elements present. These analyses were conducted 

at an accelerating voltage of 10 kV and a 

magnification of 1.300 × with an analysis  
time of 5 minutes. 

The FTIR (Fourier-transform infrared 

spectroscopy) test was carried out on dyes to 
determine chemical bonds in natural dyes. In this 

case, testing was performed explicitly on dyes to  

identify and analyse chemical bonds found in 

natural dyes. Experiments were conducted on 
spectra collected through the total attenuation 

reflectance (ATR) method, ranging from 400 cm-1 

to 4000 cm-1 and resolution of 4 cm-1. 
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DSSC fabrication 

Cells were arranged to form a sandwich 

structure consisting of a working electrode (FTO 

covered with TiO2–ZnO and aluminium doped and 
immersed in a dye solution), electrolyte, and 

counter electrode. The electrolyte was prepared by 

dissolving 8.3 g of KI and 1.26 g of I2 into 100 mL 

of Polyethylene Glycol (PEG). The counter 
electrode was produced by coating grafit on top  

of the FTO until it was evenly distributed over  

the entire surface. The FTO glass containing  
TiO2–ZnO: Al + dye was then glued to the counter 

electrode and coated with carbon using a clamp 

(paper clip). The electrolyte solution was injected 

through the gap between the two FTO glass plates. 
The DSSC test used a halogen lamp as the photon 

light source with an intensity ranging from 328 to 

580 lux, an active area of 1 cm², and the anode was 
sensitized for 15 minutes. 

Determination of Band Gap Energy 

To calculate the band gap energy  
value in TiO2–ZnO: Al + chlorophyll and  

TiO2–ZnO: Al + porphyrin composite, the Tauc 

Plot method [33] was carried out in several 

calculation steps until band gap energy was 
obtained. The process begins with the use of the 

Tauc's relation formula is as follows in Eq.(1). 
 

αhν= B (hν-Eg)𝛾                                                                      (1) 

where: α - 2.302 A; 

hν - (hc)/λ or Eg;  

A - the absorbance (arbitrary units, au); 

B - a constant; 
Eg - the band gab (eV);                   

H - Planck's constant, 6,626×10-34 J.s or 

4.14125×10-15 eV.s (where 1 eV=1.6×10-19 J); 

ν - a frequency (equivalent to 
𝑐

𝜆
; where c is 3×108 

m/s and= wavelength obtained in nm); 

γ - ½ for direct type semiconductors; 

λ - the wavelength (nm). 

Current and voltage measurement 

Current and voltage measurements  

were taken to determine photovoltaic parameters: 

Isc and Vsc. The Fill Factor (FF) was  
calculated according to the following  

Eqs.(2,3) [34-37]. 
 

FF =  
𝐼𝑚𝑎𝑥×𝑉𝑚𝑎𝑥

𝐼𝑠𝑐×𝑉𝑠𝑐
                 (2) 

 

η    =  
𝐹𝐹 × 𝐼𝑠𝑐×𝑉𝑠𝑐

𝑃𝑖𝑛
 ×100%              (3) 

 
where: Vmax - the maximum voltage (mV);  

Vsc -the open-circuit voltage (mV);  

Imax - the maximum current (µA cm 2);  

Isc  -the short-circuit current (µA cm-2);  

Pmax - the total power (W/cm2); 

Pin - the power of the halogen lamp (W/cm2, 

479×10-7 W/cm2 to 846.9×10-7 W/cm2). 

 

Results and discussion 

Absorbance measurements were conducted using 

an ultraviolet-visible (UV-Vis) spectrometer 

The optical properties of the composites 
were characterized by generating absorbance  

data with the UV-Vis spectrometer.  

Calculations to determine the band gap energy (Eg) 

were performed using the  
Tauc Plot method. The characterization  

of TiO2 composites with Al-doped ZnO  

was carried out over a wavelength range of  
300–800 nm, spanning from ultraviolet to  

visible light.  

Figure 1 illustrates the variations in 
absorbance at different wavelengths. The TiO2 

composite with Al-doped ZnO exhibits the highest 

absorbance at a wavelength of 530 nm, with a value 

of 1.44 a.u. The same composite shows the lowest 
absorbance at the same wavelength, with a value  

of 1.0175 a.u.  
 

 
Figure 1. Graph showing the relationship between wavelength and absorbance for various  

composite variations.  
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Variations in composites containing dyes 
from chlorophyll and porphyrin exhibit absorbance 

values close to those of the TiO2 composite  

with Al-doped ZnO. Absorbance decreases at 
wavelengths below 500 nm and above 550 nm. 

These changes indicate differing optical absorption 

properties in each sample, which affect the band 

gap energy values. 
Band Gap Energy 

The energy difference between the valence 

band and the conduction band in a semiconductor 
material. It determines the wavelength of  

light the material can absorb. By plotting (α Eg)2 

against Eg, a linear relationship is expected  

for direct band-gap materials. The intercept on  
the energy axis (Eg axis) can be used to determine 

the band-gap energy. 
Figure 2 illustrates that the largest band 

gap energy (Eg) occurs in the TiO2 composite with 

Al-doped ZnO and Porphyrin 0.2, which is  

1.25 eV. Conversely, the smallest band gap is 
found in the TiO2 composite with Al-doped ZnO 

and Porphyrin 0.1 dye, measuring 1.1 eV. The data 

indicate that Al doping effectively reduces the 

band gap energy of TiO2, which originally was  
3.2 eV [38], and ZnO, originally 3.7 eV [39]. 

Furthermore, the band gap of Al-doped ZnO itself 

is recorded at 3.24 eV [40]. This reduction is more 
pronounced when ZnO: Al is composited with 

TiO2. Importantly, a decrease in the band gap 

enhances light absorption, thereby improving the 
performance of solar cells. Based on these 

findings, this alternative material TiO2 with  

Al-doped ZnO and porphyrin dye shows to be 

promising. 
Aluminium (Al) doping offers benefits 

because Al acts as an electron acceptor, reducing 

the recombination rate of electron-hole pairs. 
Furthermore, Al doping enhances the absorption 

spectrum from 400-800 nm, facilitating charge 

transfer from the interior to the surface of  
the TiO2 [41]. Doping TiO2 with anionic species 

such as Al introduces a type of anion doping, where 

the combination of the doped anion's p orbitals  
(e.g., from N or Si) with the O2p orbitals of  

TiO2 elevates the valence band and lowers the band 

gap of the photo-catalyst. 
FTIR characteristics 

FTIR is a test to determine the functional 

groups formed in the DSSC layer. Figures S1-3  

(in Supplementary material) show the results  
of the FTIR test of TiO2–ZnO: Al with  

chlorophyll dye porphyrin (2:2:0.1) and porphyrin 

(2:2:0.2), respectively. The test results show 
several functional groups at specific wave  

 

numbers with wave crests formed. There is an 
absorption spectrum indicating the presence of 

anthocyanins with a range of 3200–3400 cm-1, 

namely 3347 cm-1 (chlorophyll), 3267 cm-1 
(porphyrin 2:2:0.1), and 3341 cm-1 (porphyrin 

2:2:0.2) [42]. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 2. Determination of band gap energy of 

TiO2-ZnO: Al Composites with Chlorophyll (a), 

Porphyrin 0.1 c (b), Porphyrin 0.2 (c).  
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Some of the functional groups that occur can 
be seen in Table 1.  

Absorption occurred with vigorous 

intensity, indicating the presence of the OH group 
at wave numbers 3383.26 cm-1 (TiO2–ZnO: Al 

with dye chlorophyll), 3458.48 cm-1 (TiO2–ZnO 

composites: Al and porphyrin (2: 2: 0.1), and 

3371.68 cm-1 (TiO2–ZnO composites: Al and 
porphyrin (2: 2: 0.2). The spectrum results also 

show moderate intensity absorption at a wave 

number of 1413.9 cm-1 (TiO2–ZnO: Al with dye 
chlorophyll), 1398.44 cm-1 (TiO2–ZnO 

composites: Al and porphyrin (2: 2: 0.1), and 

1398.44 cm-1 (TiO2–ZnO composites: Al and 

porphyrin (2: 2: 0.2), corresponding to C-H bonds. 
These functional groups align with those found in 

the anthocyanins framework.  

Figures 3-5 depict the FTIR spectra of TiO2 
and Al-doped ZnO. The formation of hetero-

junctions is observed in the 400–4000 cm-1  

wave-number range, allowing the identification of 

various chemical and functional groups within the 
compounds. Ti–O–Ti bonds reveal the formation 

of TiO2. Calcination at 250°C causes the 

transmission or absorption band to sharpen at  

400–900 cm-1, indicating the TiO2 anatase phase.  

The second-highest peak occurred at | 

3850 cm-1 (chlorophyll), 3759 cm-1 (porphyrin 

2:2:01), and 3711 cm-1 (porphyrin 2:2:02), 

corresponding to the O-H stretch of alcohol [40]. 
In the 1184 cm−1 band (chlorophyll), 1194 cm-1 

(porphyrin 2:2:01), and 1198 cm-1 (porphyrin 

2:2:02), the bending of the Ti-O-Ti mode was 
observed. Transmission bands at 1481 cm-1 

(chlorophyll), 1479 cm-1 (porphyrin 2:2:01), and 

1483 cm-1 (porphyrin 2:2:02) represented 
symmetrical strain vibrations of the carboxylate 

group. A peak at 1726 cm-1 (chlorophyll),  

1734 cm-1 (porphyrin 2:2:01), and 1728 cm-1 

(porphyrin 2:2:02) corresponded to the carbonyl, 
indicating a sol-gel reaction [45]. A peak in the 

850-997 cm-1 range is associated with stretching 

the Zn–O band. Similar behaviour was observed 

for the three conditions, as their respective bands 

appeared in the 652 cm-1 region, easily comparable 

with Zn-O. At 1386–1535 cm-1 (chlorophyll), 

1394–1568 cm-1 (porphyrin 2:2:01), and  

1398–1560 cm-1 (porphyrin 2:2:02) for mixed 

oxides, only ZnO can create an asymmetric 

stretching mode in the presence of oxygen in the 

sample [46-49]. 
EDX Characteristics 

EDX detects X-ray signals to produce 

elemental analysis. Because each element emits 
different characteristic X-rays, EDX detectors can 

differentiate and measure the essential presence 

and distribution in the scanned area [50]. 
Characterizing the DSSC layer using EDX aims to 

determine the elemental composition of the sample 

surface. Figures 3-5 and Tables 2-4 illustrate the 

actual content in DSSC. 

From the EDX spectra, the analysis results 

provide data on the composition of elements 
present on the surface of the TiO2–ZnO: Al photo-

electrode with chlorophyll dye, along with the 

addition of porphyrin (2:2:0.1) and (2:2:0.2), as 
shown in Tables 2-4. Figures 3-5 display the EDX 

spectrum in the DSSC layer with elemental 

composition. 

Table 2 illustrates percentages such as 
20.61% for Ti K, 63.44% for O K, 1.47% for Zn K, 

and 0.87% for Al K. 
 

 
Figure 3. EDX TiO2-ZnO: Al with dye 

chlorophyll. 
 

Table 1 

Functional groups of TiO2–ZnO: Al + chlorophyll 

and TiO2–ZnO: Al + porphyrin composite [42,43]. 

Wavenumbers Functional groups 

1234.5－1238.34 vibration Ti-O-O 

1614.47－1633.8 bending vibration of H2O and 

Ti-OH 

2351.3－2374.45 vibration CO2 

3358.23－362.04 H-OH absorbs water 

 
 

Table 2 

Composition of TiO2-ZnO: Al with dye chlorophyll. 

Element Weight (%) Atomic (%) Net Int. 

O K 39.91 63.44 506.73 

Na K 5.8 6.42 139.21 

Al K 0.92 0.87 41.47 

Au M 0.63 0.08 13.68 

S K 0.31 0.25 14.06 
Cl K 7.52 5.39 301.81 

Ca K 2.32 1.47 63.63 

Ti K 38.82 20.61 837.65 

Zn K 3.77 1.47 15.98 
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Figure 4. EDX TiO2-ZnO: Al with dye porphyrin. 
 

 
Figure 5. EDX TiO2–ZnO: Al with dye 

porphyrin (2: 2: 0.2). 

 
Table 3 

Composition of TiO2–ZnO: Al with dye porphyrin 

(2: 2: 0.1). 

Element Weight (%) Atomic (%) Net Int. 

C K 9.93 19.75 55.75 

O K 19.67 29.36 350.35 

Na K 20.52 21.32 867.06 

Al K 0.51 0.45 31.12 

Au M 0.53 0.06 16.97 

Cl K 28.2 19 1494.9 

Ca K 1.08 0.65 36.79 

Ti K 17.09 8.52 474.97 

Zn K 2.46 0.9 13.98 

 
Table 4 

Composition of TiO2–ZnO: Al with dye porphyrin 

(2: 2: 0.2). 

Element Weight (%) Atomic (%) Net Int. 

C K 13.52 25.67 102.66 

O K 25.06 35.72 453.07 
Na K 14.27 14.16 539.21 

Al K 0.19 0.16 11.04 

Au M 0.28 0.03 8.21 

Cl K 17.65 11.36 927.58 

Ti K 21.79 10.38 613.13 

Zn K 7.24 2.53 40.35 

Table 3 continues with percentages like 
8.52% for Ti K, 29.36% for O K, 0.9% for Zn K. 

Table 4 illustrates the composition of TiO2-ZnO: 

Al with dye porphyrin (2:2:0.2), showcasing 
percentages such as 10.38% for Ti K, 35.72% for 

O K, 2.53% for Zn K, 25.67% for C K, and 0.16% 

for Al K. The elements Ti, Zn, Al, and O indicate 

the formation of TiO2 and ZnO compounds, which 
aligns with previous studies [51,52]. Additionally, 

elements C, K, and Ca in chlorophyll and Na and 

Cl are identified as elements found in FTO glass.  
The C and O elements in TiO2 act as electron 

transfer connectors within its porous structure. 

Compounds of carbon in the hexagonal  

three-electron layer form covalent bonds with 

neighboring carbon atoms. The fourth electron 

acts as a free electron that moves across the 

coating's surface, enabling the conduction of 

electric currents. Element O, as an electron 

acceptor, captures the electrons generated from the 
dye. In the presence of elemental C, O, and P in 

TiO2, the charge of the dye can be captured by the 

molecules of C, O, and P. This charge can then be 

rapidly transferred to the next TiO2 particle. 
Tables 2-4 highlight the presence of 

elements Au, Ca, Cl, K, Mg, Na, O, and S. Ca, K, 

S, and Mg that are essential elements in 
chlorophyll, with the used chlorophyll originating 

from Syzygium Paniculatum, a plant belonging to 

the Myrtaceae family. The Na element is derived 

from the NaOH ligand, while Cl comes from 
aluminium nitrate (AlCl3) as a dopant compound. 

The presence of gold may be attributed to 

contamination during sample preparation or 
handling. 

Current-Voltage (I-V) Testing  

This point on the I-V curve represents the 
optimal combination of current and voltage where 

the solar cell produces maximum power. The 

coordinates of the Maximum Power Point are often 

denoted as (Imp, Vmp). 
Measurement of the I-V Curve 

The current-voltage (I-V) curve 

measurement is a crucial method for estimating the 
power conversion efficiency of solar cells.  

The speed of voltage scanning (vs) may induce a 

capacitive current depending on the cell's 
capacitance, potentially affecting the shape of the 

I-V curve. S-shaped I-V characteristics are 

common challenges in the development of new 

solar cell materials and device architectures [53]. 
These characteristics typically indicate a charge 

transport bottleneck, often at one of the selective 

contact layers. Overcoming this bottleneck through 
interface engineering and doping is essential for 

achieving high fill factors and enhancing power 

107 



S. Wuryanti et al. / Chem. J. Mold., 2024, 19(1), 102-111 

 

conversion efficiencies [54]. For I-V curves, the 
maximum power point significantly shifts toward 

lower voltages, as illustrated in Figure 6. 

The smallest fill factor (FF) values were 
observed when using the method proposed in this 

paper, in comparison to those presented in [55]. 

Additionally, the proposed method achieves an 

excellent match between the measured and 
estimated curves, as demonstrated in Table 5. 

DSSC Performance Metrics 

Current, voltage, and efficiency 
measurements are crucial for evaluating the 

performance of each DSSC, as depicted in Table 5. 

The performance of DSSCs relies on parameters, 

such as short-circuit current (Isc), open-circuit 
voltage (Voc), fill factor (FF), and energy 

conversion efficiency (η). The efficiency of DSSCs 

was assessed by incorporating dyes (chlorophyll, 
porphyrin 2:2:0.1, and porphyrin 2:2:0.2) and 

analysing the current-voltage (I-V) curves under 
halogen lamp irradiation. Table 5 shows that  

the DSSC with added chlorophyll achieved  

the highest values for Isc (269.3 μA),  
Voc (78 mV), and efficiency (13.32%). The addition 

of porphyrin 2:2:0.2 resulted in an Isc of  

212.6 μA, Voc of 105 mV, and an efficiency  

of 13.95%. The improved performance in  
DSSCs are attributed to the addition of dyes, which 

facilitate electron transfer by acting as bridges 

between the porous TiO2 and ZnO: Al molecules, 
thus reducing barriers in the electron transfer 

process [56]. This study achieved efficiencies 

surpassing those of non-ruthenium research  

using I2/I3
- electrolytes, which reported an 

efficiency of 11.5% [57]. 

This phenomenon shortens the charge 

delivery distance, leading to increased electric 
current and improved DSSC performance. 

 
Table 5 

Performance of DSSC. 

Photo-electrode  

and dye 

Vsc 

(mV) 

Isc 

(μA)/cm2 

Vmax 

(mV) 

Imax 

(μA)/cm2 

FF Pmax ×109 

(W/cm2) 

Pin × 107 

(W/cm2) 

η (%) 

TiO2–ZnO: Al 53 269.3 45.0 163.7 0.516 7364.8 777.4 9.47 

and chlorophyll 72 266.9 58.5 172.1 0.524 10069.6 821.3 12.3 

   58.4 262.1 46.1 177.9 0.536 8204.4 825.7 9.9 

   42.2 257.4 29.5 192.0 0.521 5664.0 834.5  6.8 

 78 193.7 69.3 160.0 0.733 11074.6 831.6 13.3 

TiO2–ZnO: Al   28.3 276.3 20.0 197.1 0.504 3946.3 833.0 4.7 

and porphyrin    32.5 276.2 21.1 189.0 0.444 3985.6 775.9 5.1 

(2:2:0.1)   40.2 278.4 22.1  198.1 0.391 4375.9 846.2 5.2 

 37 278.1 22.3 238.0 0.516 5309.5 620.7 8.6 

   38.6 278.7 23.4  238.5 0.518 5572.6 625.1 8.9 

TiO2–ZnO: Al 47 111.7 29.5 83 0.472 2477.9 412.9 6 

and porphyrin  42 152.9 32.0 85 0.424 2722.8 420.2 6.5 

(2:2:0.2) 54 212.6 46.6 87 0.353 4054.2 761.4 5.3 
 97 132.5 92.9 86 0.662 7994.3 790.6 10.1 

 105 87.2 96.0    69.6 0.730 6683.9 479.0 13.9 

 
 

 
Figure 6. Series of I–V curves. 
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Conclusion 

The integration of natural dyes (chlorophyll and 

porphyrin) into DSSC was successfully achieved. 

Adding dye to the composite fills voids between  

TiO2–ZnO: Al molecules, decreasing gaps and 

accelerating electron transfer, ultimately reducing 

electron recombination rates. The study reveals that 

incorporating dye into TiO2–ZnO: Al enhances DSSC 

performance, showcasing optimal characteristics in 

absorptivity, optical band gap, and electrical parameters. 

The highest DSSC efficiency achieved is 13.95%, 
emphasizing the interdependence of absorbent layer 

quality with photovoltaic performance. 
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