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Abstract.This study introduces an environmentally sustainable approach for the synthesis of  

3,4-dihydropyrimidin-2(1H)-ones (DHPMs), via the Biginelli reaction. A heterogeneous catalyst, 

Heteropolyacid-Clay (HPA-Clay), is developed by immobilizing H5PV2W10O40 on Montmorillonite KSF 

clay. The catalyst exhibits enhanced stability and catalytic efficiency, confirmed through X-ray powder 

diffraction and scanning electron microscopy. Utilizing a one-pot multi-component strategy under 

solvent-free conditions, various aldehydes, urea or thiourea, and ethylacetoacetate generate DHPMs with 

excellent yields and reduced reaction times. Catalysed by 2 mol% HPA-Clay, the process aligns with 

green chemistry principles, emphasizing cost-efficiency, environmental sustainability, and recyclability. 

The catalyst demonstrates consistent activity over multiple cycles, highlighting its potential for advancing 

Biginelli reactions. 
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Introduction 

In the realm of synthetic chemistry, 

continuous efforts are directed towards 

streamlining and optimizing molecular synthesis 

processes [1]. Multicomponent reactions (MCRs) 

have emerged as invaluable tools in this pursuit, 

offering a means to efficiently amalgamate 

multiple molecular components into a singular 

product [2]. Particularly noteworthy are MCRs  

that facilitate the formation of carbon-carbon 

bonds and nitrogen-containing functionalities, as 

they enable combinatorial synthesis without 

necessitating intermediate compound isolation [3]. 

Multicomponent reactions occupy a pivotal 

position within the domains of organic and 

medicinal chemistry [4,5]. Their significance lies 

in their ability to harmonize with eco-conscious 

principles, curtailing the intricacy of synthetic 

sequences, minimizing energy consumption,  

and mitigating waste production [6]. Of  

paramount importance in drug discovery are  

nitrogen-containing heterocycles due to their 

indispensable roles within medicinal chemistry. 

The imperative for novel synthetic pathways  

to access fused heterocyclic structures is 

underscored by their versatile utility in diverse 

therapeutic applications [7]. Pyrimidine 

derivatives, especially Biginelli compounds  

(dihydropyrimidin-2(1H)-ones), are of particular 

interest because these compounds exhibit various 

biological activities [8], which include 

antibacterial [9] antifungal [10] anticancer [11], 

anti-inflammatory, anthelmintic [12], 

antihypertensive [13] anti-HIV [14], and  

anti-malarial properties [15] etc. Therefore, the 

synthesis of various 3,4-dihydropyrimidin-2(1H)-

ones is of paramount importance, and the Biginelli 

reaction offers a straightforward route to access 

these dihydropyrimidones. Significant endeavours 

have been undertaken to enhance yields and  

fine-tune reaction parameters, driven by the 

significance of the resultant products. Many 

researchers are working to prepare their libraries 

by implementing various modifications using 

various synthetic techniques to speed up the 

reaction time and boost yield while utilizing a 

https://orcid.org/0000-0003-1262-0189
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variety of different catalysts. Some of the catalysts 

that have been recently reported include 

Cu(OTf)2/MW [16], ammonium metavanadate 

(NH4VO3) [17], cerium(IV) ammonium nitrate 

[18], Sm(ClO4)3 [19], La(OTf)3 [20], 

triethylammonium hydrogen sulphate [21], BiCl3 

[22] and Mn(OAc)3.2H2O [23], HCl/EtOH [24], 

Yb(PFO)3 [25], acidic ionic liquids [26] and other 

catalysts.  

Despite their potential benefits, these 

chemical processes are challenged by the use of 

costly or hazardous reagents and are burdened  

by unfavourable reaction conditions. These 

conditions encompass the requisition of potent 

acids, protracted reaction durations, elevated 

temperatures, stoichiometric catalyst quantities, 

ecological ramifications, intricate work-up 

procedures, exacting reaction prerequisites, and a 

constrained economic feasibility culminating in 

paltry yields. Consequently, the quest for a  

novel and efficacious catalyst, one capable of 

engendering 3,4-dihydropyrimidin-2(1H)-ones 

under conditions that are neutral, reasonable, and 

pragmatic, while concurrently exhibiting elevated 

catalytic prowess, abbreviated reaction intervals, 

recyclability, and straightforward work-up 

methodologies, assumes paramount significance in 

surmounting these impediments. Remarkably, 

heteropolyacids (HPAs) have emerged as catalysts 

with the potential to facilitate the Biginelli 

reaction, offering a source for the synthesis of 

numerous novel compounds. This class of catalysts 

finds widespread application in the production of 

high-quality organic compounds, pharmaceuticals, 

cosmetics, and agrochemicals, owing to their 

catalytic efficiency and versatility. HPAs have 

been effectively utilized in various organic 

transformations, including the synthesis of  

acylals, tetrahydropyranilation of phenols, 

thioacetalization, and transacetalization reactions, 

as they exhibit higher reactivity compared to 

traditional inorganic and organic acids in solution. 

Furthermore, they serve as industrial catalysts  

for numerous liquid-phase processes, 

encompassing esterification, alkylation, and 

alcohol dehydration [27,28]. Heteropolyacids 

(HPAs) are heterogenized by immobilizing them 

on solid supports to enhance stability, facilitate 

catalyst recovery, and tailor their catalytic 

properties. This approach promotes recyclability, 

minimizes waste, and improves reactivity, aligning 

with green chemistry principles. 

Continuing the exploration of the Biginelli 

reaction [29] and supported heteropolyacids [30], 

the authors have developed a precisely formulated 

HPA-Clay composite as a heterogeneous catalyst. 

This catalyst assumes a crucial role in enabling a 

one-pot multicomponent synthesis approach, 

facilitating the generation of a diverse range of 

novel dihydropyrimidinone (DHPM) derivatives. 

The employed methodology is distinguished  

by its simplicity and is marked by high 

effectiveness, cost-efficiency, environmental 

sustainability, and recyclability, in perfect 

alignment with the principles of green chemistry. 

The groundbreaking aspect of this research lies in 

the utilization of the HPA-Clay catalyst as a 

reusable heterogeneous catalytic system.  

This represents a significant advancement in the 

domain of Biginelli reactions, holding substantial 

promise for further progress in this field. The study 

showcases a pioneering approach to complex 

chemical syntheses, emphasizing sustainability 

and suggesting potential avenues for further 

developments. 

 

Experimental 

Generalities 

Chemicals used for this HPA are: Na2HPO4, 

V2O5, Na2CO3, Na2WO4·2H2O, 50% sulphuric acid 

and diethyl ether. All reagents for chemical 

synthesis were obtained from Sigma Aldrich.  

All the chemical reactions were monitored by TLC 

on 0.25 mm silica gel 60 F254 plates (E. Merck) 

using 2% ceric ammonium sulphate solution for 

detection of the spots.  
1H and 13C NMR spectra (with chemical 

shifts expressed in δ and coupling constants  

in Hertz) were recorded on Bruker DPX 200, 400 

and DPX 500 instruments using CDCl3 or CD3OD 

as the solvents with TMS as internal  

standard. High resolution mass spectra (HRMS) 

were recorded on Agilent Technologies 6540 

instrument. IR spectrarecorded on an  

FT-IR Bruker (270-30) spectrophotometer 

(supplementary data).  

The crystallinity of the sample (HCNC) was 

studied by recording X-ray powder diffraction 

patterns on a Rigaku Miniflex diffractometer, 

using Ni-filtered Cu Kα (0.15418 nm) radiation 

source. 

The BET surface area of the catalyst was 

determined using the instrument SMART SORB 

92/93 under liquid Nitrogen. 

Scanning electron microscopy (SEM) of  

the catalyst was carried out using a JEOL  

JEM-100CXII electron microscope with an ASID 

accelerating voltage of 40 kV. 

Microwave irradiation of the reaction 

mixture for comparison was done by using a 

conventional kitchen microwave oven Electrolux 

EM30EC90SS. 
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An ultrasonic bath (Soner 206H, Rocker 

Scientific Co., Ltd) with an operating frequency of 

53 kHz and ultrasonic power of 180W was utilized 

for comparing the methods of preparation Biginelli 

reactions. 

Preparation of H5PV2W10O40·10H2O (HPA) 

Disodium hydrogen phosphate (Na2HPO4, 

1.775 g, 25 mmol) was dissolved in 50 mL of water 

and mixed with vanadium pentoxide (V2O5, 6.1 g, 

100 mmol) dissolved in 20 mL of 1M Na2CO3 and 

the solution so formed was boiled for 30 min 

(green colour) and then cooled to room 

temperature. To this solution, sodium tungstate 

dihydrate (Na2WO4·2H2O, 41.25 g, 250 mmol) 

dissolved in 20 mL of water (black colour) was 

added. This solution was kept at 90°C for 30 min 

(bluish green colour), cooled and to it was added 

50% sulphuric acid (50 mL) drop wise, a wine-red 

solution (pH= 2) was obtained. Extraction of the 

solution with diethyl ether (100 mL) afforded the 

orange-red H5PV2W10O40·10H2O product. 

Preparation of HPA-Clay catalyst  

The HPA so formed was dissolved in  

150 mL water and added dropwise to 500 mL 

aqueous suspension of 10 g Montomorillonite 

KSF. This mixture was stirred for 5h and the water 

was evaporated over water bath to get a dry 

powder, which was kept overnight in hot air oven 

at 110°C. A portion of this solid was then calcined 

at 425°C for 3h to get a heteropoly acid clay nano 

composite and was named as HCNC. The catalyst 

was characterized using X-Ray powder diffraction 

(XRD) and scanning electron microscopy. 

General procedure for the synthesis of DHPM 

derivatives  

In a systematic procedure, a mixture 

comprising 10 mmol of aldehyde, 15 mmol of  

1,3-dicarbonyl compound, 15 mmol of urea or 

thiourea, and 2 mol% HPA-Clay was subjected to 

reflux conditions without the use of a solvent, with 

reaction progress monitored via TLC over a 1-hour 

duration. Following the completion of the reaction, 

the mixture was allowed to cool to room 

temperature. To this reaction mixture 5 mL of 

ethanol was added to dissolve the organic 

constituents and catalyst was removed via 

filtration. Subsequently, the filtrate was dried and 

introduced into ice-water (30 mL). After 

undergoing washing and other requisite workup 

steps, the crude product was dried and dissolved in 

a small quantity of ethyl acetate to form a saturated 

solution. To this solution, an excess of hexane was 

added until precipitation occurred. This turbid 

solution was left undisturbed until complete 

settling of the precipitate. The precipitate was then 

filtered, and if necessary, it was subjected to  

re-crystallization from ethanol to obtain the pure 

products. Furthermore, the used solid catalyst was 

washed with ethanol the dried at 105°C so that it 

can be reused for a subsequent run of the Biginelli 

reaction. After partial success of the reaction, 

search for different conditions to optimize the yield 

and reaction time was conducted. 

 

Results and discussion 

The abovementioned facts served as 

inspiration for the development of a unique green 

methodology that involves the synthesis of DHPM 

analogues via the Biginelli reaction. The process 

uses a multicomponent reaction that is catalysed by 

a reusable, heterogeneous HPA-Clay catalyst  

made up of H5PV2W10O40 supported on Clay.  

The method uses a three-component, one-pot 

Biginelli-type reaction to convert various 

aldehydes, urea, and ethylacetoacetate into the 

corresponding pyrimidinones while the presence of 

a catalytic amount of HPA-Clay. The model 

reaction produced the desired DHPM in a good 

yield (Scheme1). Reaction presented in Scheme 1 

was selected as a model reaction for reaction 

optimization and catalyst comparison. 

The best results were obtained under 

solvent-free circumstances (neat), utilizing  

HPA-Clay catalyst equivalent to 2 mol% of HPA, 

1.5 equivalents of urea/thiourea, ethyl 

acetoacetate, and 1 equivalent of aldehyde under 

reflux conditions for 1 h, giving rise to the required 

product in good yields i.e. 96%. This DHPM was 

identified by spectral analysis in light of the 

available literature [16-26,29]. 
 

 
Scheme 1. The model reaction for the preparation of DHPMs. 
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Scheme 2. General reaction for the preparation of DHPM analogues. 
 

 

Table 1  

HPA-Clay catalysed synthesis of DHPM in different solvents and under solvent free conditions. 

S.No. Solvent Time  

(h) 

Amount of catalyst 

(mol %) 

Yield  

(%) 

Temperature  

(°C) 

1. 1,4-dioxane 6 h 10 65 Reflux  

2. Acetonitrile 5 h 10 77 Reflux 

3. Toluene 7 h 10 71 Reflux 

4. Ethanol 2 h 10 87 Reflux 

5. Solvent free 1 h 10 92 Reflux 

6. Solvent free 1 h 2 96 Reflux 

7. Solvent free 5 minutes 2 70     Microwave at 500°C 

8. Solvent free 30 minutes 2 74 Sonication at 35°C 

9. Ethanol 18 h 2 40 RT (25) 

10. Solvent free 14 h 2 52 RT 

para-methoxy benzaldehyde:urea:ethylacetoacetate in the ratio of 1:1.5:1.5. 

 

 

Encouraged by the initial success in the 

formation of the compound 4f, a thorough 

optimization study was carried out with the aim of 

reducing the reaction time and space, improving 

the yields, minimizing the temperature range, and 

exploring study towards the use of solvents and 

catalysts for better yields because of the biological 

and synthetic importance of the DHPMs as 

described earlier. The use of solvent free 

conditions had profound effect in terms of time 

saving as the reaction was complete in 1 h and the 

yields were excellent (Table 1). 

The reaction was also tuned in terms of the 

amount of catalyst (HPA-Clay) and the optimum 

amount of the catalyst that produced the best yields 

in the shortest amount of time was 2 mol%. 

Additionally, the reaction was observed in a 

microwave under various temperature conditions, 

and sonication techniques were also tested. 

Compound 4f was produced in a low yield by a 

microwave-assisted reaction with HPA-Clay  

as the catalyst. Under ultrasonication at 35°C  

with a 30 min reaction time were poor.  

In order to facilitate stirring, the reaction was also 

carried out at room temperature; however, this 

prolonged the reaction's completion time and 

resulted in rather low yields. From the above 

results, it may be concluded that the temperature 

affects not only the yield of the products but also 

the reaction time.  

Table 2  

Synthesis of 3,4-dihydropyrimidin-2(1H)-ones. 

Compound R X Yield 

(%) 

4a C6H5 O 97 

4b C6H5 S 95 

4c 4-(Cl)–C6H4 O 93 

4d 2-(Cl)–C6H4 O 89 

4e 4-(Br)–C6H4 O 93 

4f 4-(MeO)–C6H4 O 96 

4g 2,3-(OMe)2-C6H3 O 94 

4h 2,4-(OMe)2-C6H3 O 95 

4i 3,4,5-(OMe)3-C6H2 O 97 

4j 4-(NO2)-C6H4 O 79 

4k 4-(F)-C6H4 O 83 

4l 2-(Br)-5-(OMe)-C6H3 O 87 

  4m Piperanal O 94 

4n 2-(NO2)-C6H4 O 81 

4o 4-(OH)-C6H4 O 78 

4p 3-(OH)-4-(OMe)- C6H3 O 93 

4q 5-(Br)-2-(OMe)-C6H3 O 94 
 

To emphasize the merits of the present 

study, a comparative analysis was conducted on the 

synthesis of 5-ethoxycarbonyl-4-phenyl-6-methyl-

3,4-dihydropyrimidin-2(1H)-one (4a). Various 

catalysts, including montmorillonite KSF, 

sulphuric acid, zeolite, silica-sulphuric acid,  

BF3-OEt2/CuCl, H3PMo12O40, and HPA-Clay, 

were employed under solvent free conditions and 

at reflux temperature, with a specific focus on 

reaction times (Table 3). 
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Table 3  

Comparison the results of the synthesis of  

5-ethoxycarbonyl-4-phenyl-6-methyl-3,4-dihydro 

pyrimidin-2(1H)-one (4a) using different catalysts. 

Entry Catalyst  Time (h) Yield (%) 

1. Montmorilonite KSF  48 82 

2. Sulphuric acid  18 71 

3. Zeolite  12 80 

4. Silica sulphur acid  16 91 

5. BF3
.OEt2/CuCl 18 71 

6. H3PMo12O40  5 80 

7. HPA-Clay  1 96 

 

The synthesis of 5-ethoxycarbonyl-4-

phenyl-6-methyl-3,4-dihydropyrimidin-2(1H)-one 

(4a) showed different outcomes when compared to 

the catalytic activity of various catalysts against 

HPA-Clay. While reactions using these catalysts 

demanded longer reaction times, montmorilonite 

KSF stood out with a higher yield (82%) compared 

to others. However, it's noteworthy that the  

HPA-Clay catalyst yielded the highest product 

yield (96%) in the shortest reaction time (1 hour). 

Moreover, the HPA-Clay catalyst demonstrated 

reusability for up to six cycles without significantly 

compromising overall reaction yields. 

Synthesis of novel 3,4-dihydropyrimidin-2(1H)-

one derivatives 

Aldehydes of many types, including 

aromatic and aliphatic aldehydes, were employed 

to investigate the newly developed Biginelli 

reaction. Some of these aldehydes were made 

synthetically, while others were modified from 

natural sources. In addition to creating a new 

library of DHPM products (Scheme 3, Table 4) not 

previously documented in the literature, the use of 

these aldehydes was intended to broaden the scope 

of the Biginelli reaction. Elemental analysis and 

spectroscopic methods have been used to establish 

the structures of the newly synthesized 

compounds. 

Catalyst characterization 

From the XRD prototype, it has been 

confirmed that the synthesized catalysts are well 

crystalline in nature (Figure 1). The sample was 

scanned over the range 2.00-79.99 on 2θ scale with 

steps 0.011° and step time 13.6 s. The powder XRD 

patterns of the HCNC were more crystalline and 

show additional reflections which are 

characteristics of HPA. This confirmed that HPA 

is well supported on Montomorillonite KSF and 

also improves the crystallinity of the supported 

catalysts. The XRD pattern of the catalyst shows a 

very low intensity reflection at 2θ= 9.9, which may 

be due to the residual 2:1 (T-O-T) structure of 

Montomorillonite KSF. The increase in specific 

surface area and formation of mesopores results 

because of delamination during the process of 

preparation. HPA loading on montomorillonite 

increases the phase crystallinity, which increases 

the available active acidic sites for the reactions. It 

is obvious that the peaks are very sharp which 

provide evidence that the sample is exceedingly 

crystalline. The B.E.T. surface area of the catalyst 

was determined and found to be 80.4762 m²/g. 

 

 

 

Scheme 3. General procedure for preparation of novel DHPM analogues. 
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Table 4  

Novel 3,4-dihydropyrimidin-2(1H)-ones. 

Compound R Yield (%) 

5 

 

96 

6 
 

93 

7 
 

95 

8 

 

93 

9 
 

89 

10 

 

93 

11 

 

96 

12 

 

94 

13 

 

95 

14 

 

92 

15 

 

92 

16 

 

92 

17 

 

87 

18 

 

89 

19 

 

88 

20 

 

90 

21 

 

93 

 

Figure 1. Powder X-ray diffraction for 

heteropolyacid supported on montomorillonite. 

 

Figure 2. SEM image of heteropolyacids clay 

nanocomposite. 

 
To study the morphology of the catalyst 

scanning electron microscopy (SEM) of sample 

was carried out. The SEM image of the gross 

morphology of the HPA-Clay is displayed in 

Figure 2. The SEM image is a confirmation for 

coarse surface (thus elevated surface area), which 

is able to absorb substrate and/or reagent to a high 

extent. It was observed that HPA particles were 

randomly distributed over the support surface. It 

should be noted that HPA layer formed in the 

present work was constituted by several aggregates 

of HPA particles and not by a continuous film. 

Catalyst recyclability 

Due to the scarcity of green catalysts, an 

assessment was done within the domain of green 

chemistry to investigate the possibility of catalyst 

recycling. The adoption of easily recoverable and 

recyclable catalysts is a promising technique that 

offers a substantial opportunity to develop efficient 

catalysts for converting diverse aldehydes into 

pyrimidinones under mild reaction conditions.  

The HPA-Clay-Nanocomposite (HCNC) 

catalyst displayed stability in water after a 4-hour 

immersion, with no activity loss observed.  

 

In
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Furthermore, it demonstrated the ability to be 

reused several times without significant activity  

degradation. The recyclability and reusability of 

the catalyst were demonstrated in six cycles in a 

model reaction, as shown in Figure 3. 
 

 
Figure 3. Recyclability of the catalyst. 

 

Conclusion 

This study introduces an environmentally 

friendly methodology utilizing a heteropolyacid-

clay (HPA-Clay) catalyst in the Biginelli reaction 

for the synthesis of 3,4-dihydropyrimidin-2(1H)-

ones (DHPMs). Employing a solvent-free, one-pot 

multicomponent approach, a diverse range of 

DHPMs is successfully synthesized with notable 

yields and reduced reaction times. The utilization 

of 2 mol% HPA-Clay as the catalyst aligns with 

green chemistry principles, emphasizing economic 

efficiency, environmental sustainability, and 

recyclability. The demonstrated potential of  

the catalyst in advancing Biginelli reactions  

for drug development is underscored by its 

consistent activity over multiple cycles. The  

HPA-Clay composite catalyst represents a 

significant advancement, offering a reusable  

heterogeneous catalytic system for one-pot 

multicomponent synthesis. Recognized for its 

simplicity, cost-effectiveness, and environmental 

sustainability, this methodology contributes to 

ongoing efforts in synthetic chemistry. The 

catalyst's stability and practical utility are 

evidenced by its recyclability and reusability for up 

to six cycles. This approach, aligned with green 

chemistry principles, addresses challenges inherent 

in conventional chemical processes, presenting a 

noteworthy contribution to the field of sustainable 

synthesis. 
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