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Abstract. The paper proposes an artificial neural network (ANN) model of multilayers perceptron type 

(MLP3:10:1) adapted for mechanical-chemical treatment system of an industrial effluent  

(i.e. coagulation-flocculation - sedimentation applied for an industrial effluent produced in a 

manufacturing plant of bricks and other ceramic products). This model of multiple inputs-one single 

output considers three input variables (independent variables) like the temperature (z1), dose of 

polyelectrolyte (z2) and agitation time (z3) and one single output variable (dependent variable) as the 

removal of turbidity (Y1) or colour (Y2). Consequently, the proposed ANN model is optimized and also 

tested for some data from outside of the training experimental field. The optimal removal of turbidity 

(91.7%) is performed working at a temperature of 20°C, with a polyelectrolyte dose of 20 mg/L, for  

30 min of agitation at 50 rpm, and in the case of optimal colour removal (92.2%) by working at a 

temperature of 26°C, with a polyelectrolyte dose of 15 mg/L, for no more than 30 min of agitation  

at 50 rpm, respectively. 
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Introduction 

The central concept of an industrial effluent 

treatment is to save water and also to reduce at 

zero or minimize the polluting effects of treated 

effluent in the discharging point in both sewer 

system and natural receptor, or for other purposes, 

such as recycling or onsite reuse. Therefore, the 

modern concept is moving away from the classic 

‘end-of-pipe’ technology towards ‘decentralized 

effluent treatment processes’, ‘process integrated 

water management’ and ultimately, in a number 

of possible cases, to ‘fresh water-free processes’. 

Frequently, it becomes more economic and 

favourable to treat some industrial effluents by 

specialized processes which make possible to 

reuse one or more streams (i.e. treated effluents) 

and to save fresh water [1].  

In this context, some developments were 

performed to combine production processes and 

wastewater treatment often named ‘process-

integrated water management’ (i.e. sustainable 

water use, sustainable industrial water use, or 

cleaner production) following mainly two 

different wastewater treatment concepts as: (1) 

separation of pollutants from water/wastewater, 

especially solid matters, and (2) partial or 

complete mineralization of polluting species, 

especially dissolved ones. Collection, treatment 

and disposal are three basic components of any 

industrial wastewater management system, where 

collection component is kept as minimal as 

possible, the highest importance being focus 

mainly on necessary treatment and disposal of 

treated wastewater [2]. The selection of 

appropriate industrial wastewater treatment must 

consider the life cycle cost of such a system 

including design, construction, operation, 

maintenance, repair and replacement. The most 

cost-effective industrial wastewater treatment 

system is a decentralized system (onsite or 

cluster) based on primary and secondary treatment 

steps (e.g., at least a conventional mechanical-

chemical, or mechanical-biological treatment 

system), but many systems currently in use do not 

provide a treatment level that is needed to protect 

public health and receiving environment [3]. 

A cost effective treatment system for an 

industrial productive company can be based on 

one-single, or two treatment steps such as mixed 

coagulation-flocculation followed by 

sedimentation and/or rapid filtration applied with 

minimal costs in existing treatment units that are 
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operating at optimal parameters for high treatment 

performance and no disposal risks.   

The integrated process water management 

is proposing also optimization of existing, or new 

processes with the aim of saving water, materials 

and energy together with consideration of the best 

way for a balance of economical success, 

environmental protection and social acceptance. 

This requires firstly process modeling and after 

optimization [1]. For an efficient optimization of 

the industrial effluent treatment process it is 

requiring adequate advanced modeling, 

simulation and optimization using modern, 

available and ease adaptable procedures.  

In actual times, some studies using artificial 

neural networks (ANNs) in modeling of 

biological wastewater treatment processes have 

been published, providing some alternative 

approaches [4-11]. Based on the obtained results, 

the researchers were appreciated the great 

potential of ANNs as tools for the prediction of 

water resources’ quality, or assurance of 

significant remediation efficiencies in terms of 

permanent and adequate values of the main 

monitoring quality indicators (physical, chemical 

and biological/microbiological ones), or hydraulic 

loads for health and protection of natural  

aquatic receptors. 

Meenakhsipriya et al. [12] performed the 

application of artificial neural network techniques 

to estimate the pH value for an effluent treatment 

process. Thus, ANN had the ability to identify the 

non-linear dynamical systems from the input-

output data. An important requirement of this type 

of application was the robustness of the system 

against erroneous sensor measurements. A 

simulation model of system pH for common 

effluent treatment plant (CETP) was developed. A 

novel off-line and on-line training scheme for the 

neural network was developed by error back 

propagation training algorithm to model 

accurately the system pH for CETP. For this 

purpose, a simple feed forward, back propagation 

neural network, with only one hidden layer, and 

sigmoidal activation functions was used [12].  

The ANN models with multiple inputs - 

single output have been developed [13], and used 

in analyzing how wastewater quality indicators 

such as biochemical oxygen demand (BOD), 

chemical oxygen demand (COD), and suspended 

solids (SS) are affecting each other.  

It was concluded from the reported works 

[10-11] that ANNs can be efficiently  

applied to analyze the complex,  

non-linear and dynamic data which can make 

ANNs a valid tool to study biological and/or 

physical-chemical processes, but also the hybrid 

or mixed ones. 

A Wiener-Laguerre model with artificial 

neural network, as its nonlinear static part, was 

employed to describe the dynamic behaviour of a 

sequencing batch reactor (SBR) used for the 

treatment of a dye-containing wastewater [14]. 

The results from this study revealed that the 

developed model is accurate and efficacious in 

prediction of COD and BOD of the dye-

containing wastewater treated by SBR. The 

proposed modelling approach can be applied to 

other industrial wastewater treatment systems to 

predict effluent characteristics. 

The reference literature concludes that 

neuronal modelling (ANN modelling) and 

optimization through simulation of industrial 

effluent treatments, such as an industrial 

mechanical-chemical effluent treatment, can be 

useful in modernization of existing wastewater 

treatment plant (WWTP). 

Consequently, it is proposed in this original 

paper the presentation of an artificial neural 

network model of multilayers perceptron (MLP) 

type adapted for mechanical-chemical treatment 

system of an industrial effluent produced by a 

manufacturing unit of bricks and other ceramics 

(i.e. coagulation/flocculation - sedimentation) for 

evaluation of its treatment efficiency in terms of 

turbidity (Y1) and colour (Y2) removals (single 

output) considering three input variables 

(temperature, polymeric flocculant dose and 

agitation time), and its optimization for a few data 

from outside of training/testing experimental field 

of ANN model (overfitting and overtraining data). 

 

Experimental 

Materials  

All chemicals used for industrial effluent 

treatment process and analyses of different quality 

indicators of non-treated and/or treated effluent 

were of analytical purity, being purchased from 

Romanian chemical manufacturing companies 

(CHEMICAL Co., Iasi, Romania and/or NORDIC 

INVEST Co., Cluj Napoca, Romania) [1].  

Ferric sulphate, aqueous stock solution of 1 

g/L, was used as coagulation agent, without or 

with addition of bentonite (0.5 g/L) (commonly 

without bentonite addition). As flocculation agent 

was tested a polymer, like PONILIT GT-2 anionic 

polyelectrolyte, the sodium salt of copolymer 

based on maleic acid and vinyl acetate patented 

by ‘P.Poni’ Institute of Macromolecular 

Chemistry, Iasi, Romania (1981), which was 

soluble in water and used in effluent treatment at 

a stock concentration of 0.5% (w/v) [15-16].  
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This anionic polyelectrolyte has been firstly 

produced by the Chemical Enterprise of Falticeni 

and purchased by CHEMICA Company, 

Bucharest, having the following properties: amber 

colour, specific smell, pH of 6.5–8, content of 

active product in solution of 33–36% (w/w), 

density of 1.18–1.21 g/cm
3
, water soluble, 

viscosity at 20±1°C of 150–1800 cP, average 

molecular weight of 2
.
10

5
–3

.
10

6 
g/mol, no 

corrosive or toxic effects [15]. 

Analysis methods 
There were used internationally approved 

standard analysis methods for all quality 

indicators of treated or un-treated industrial 

effluents (i.e. simulated synthetic wastewaters 

and/or real final effluents from a bricks’ 

manufacturing plant).  

Colour determination. It was expressed by 

absorbance measurements at three wavelengths 

(436, 525, and 620 nm), obligatorily being 

absorbance at 436 nm, or Hazen units (HU)  

(i.e. 50 HU corresponds to an absorbance of 0.069 

at 456 nm) [15-16].  

Turbidity determination. It was directly 

measured at DRELL 2000 spectrophotometer 

(HACH Company) in formazine units (FTU), at 

450 nm, using distilled water as blank, in 

accordance with test program #750 [15-16]. 

pH determination. It was measured directly 

at HACH One Laboratory pH meter. 

Other determinations of studied quality 

indicators. The concentrations of chlorides, 

hardness, conductivity, suspended solids, or 

chemical oxygen demand were determined using 

internationally approved standards and  

reference materials, especially spectrophotometer-

based analysis methods, adapted for the  

specific test programs, and reagent kits of  

DRELL 2000 spectrophotometer, HACH 

Company [17].  

Treatment methodology of industrial effluent 

The industrial effluent treatment technology 

was considered a mechanical-chemical process 

based on different steps like coagulation-

flocculation (chemical step), achieved with 

coagulation agent (ferric sulphate solution,  

7.5 mg Fe
3+

/L, without or with optional addition 

of indigene bentonite, 0.5 g/L), and flocculation 

agent (Ponilit GT-2 anionic polyelectrolyte,  

0.05-1.0 mg/L) under agitation (50 rpm) for no 

more than 45 min (usually, the testing agitation 

range was varied between 20-45 min), and after 

settlement of min 30 min (mechanical step) 

without agitation [15-16] (a batch experimental 

system is used). The supernatant was then 

analyzed in terms of turbidity, colour and other 

quality indicators in order to appreciate the 

treatment performance. 

The removal of turbidity and colour is 

calculated with Eq.(1): 
 

100(%) 




i

fi

C

CC
Y  

(1) 

 

where, Y - removal degree (for turbidity - Y2, or 

for colour - Y1), in %;  

Ci - initial value of quality indicator, 

turbidity or colour, in FTU or HU;  

Cf  - final value of quality indicator, final 

turbidity or colour, in FTU or HU. 

 

Neural modelling and optimization 

ANN is a highly simplified model of 

decision-making and predictive process, which 

imitates the function of a human brain in 

processing information to understand the input–

output relationships, as to be finally able to 

transform inputs into meaningful outputs [4-5]. 

The obtained knowledge is used then in prediction 

of response values. 

In this study, a multilayers’ perceptron 

neural network was utilized [18], consisting of 

identical neurons, interconnected and organized in 

layers, such as the outputs in one layer become 

the inputs in the subsequent layer. Data flow via 

the layer input passes through one or more hidden 

layers and exits finally via the layer output, being 

known generically as a feed-forward network. 

The hidden and output nodes of an MLP network 

contain an appropriate activation function, which 

calculates the node’s output from the weighted 

input signals [18], such as a type of sigmoid or 

tangential hyperbolic functions, which is a family 

of S- or T-shaped functions.  

The first step in the development of ANN 

model for the studied industrial effluent treatment 

consists of selection of ANN type and its optimal 

configuration (i.e. number of layers, number of 

processing elements as neurons in the layers, and 

transfer or activation functions). The number of 

elements in the input and output layers are equal 

to the number of input and output variables 

(responses) of the system to be studied, 

respectively. Therefore, it was considered for the 

studied industrial effluent treatment three input 

variables (temperature-z1, polyelectrolyte dose-z2 

and agitation time-z3), and one output variable of 

two types (Y1-turbidity and Y2-color removal). 

There are no strict rules to determine the optimal 

number of neurons in the hidden layer; this is 

normally done by a trial and error approach, with 

the initial number of neurons set equal to half the 
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sum of the number of input and output neurons as 

a recommended starting point [18-19].  

The second step consists of training the 

configured ANN by fitting the model represented 

by ANN to a set of given experimental data 

(resulted after laboratory simulated synthetic 

wastewater treatments in specific given operating 

conditions). In other words, the error function 

computed by comparing outputs of the ANN and 

real outputs of the effluent treatment system 

should be minimized. In cases where training was 

performed too long, or where experimental data 

used in training are rare, the configured ANN may 

adjust to very specific features of the training 

data, which have no causal relation to the target 

function. Therefore, the ANN is departing from 

the general structure of the target function to 

learning about the individual cases instead. This 

problem is well known as over-fitting or over-

learning, when the general performance of the 

neural network (its performance on new data) is 

poor, even if the performance of the training data 

is acceptable [20]. To avoid over-fitting, the 

technology of ‘cross verification’ is applied. In 

this case, the available experimental data should 

be split in two sets: one is used for training 

(training set) and the other is used for cross 

verification (validation set), and during the 

training process, the performance of the validation 

set is observed as concurrent with the training set.  

In other words, the artificial neural network 

is trained on the training set, and its performance 

verified using the validation set (real experimental 

data performed for an industrial effluent treatment 

system, a wastewater treatment plant of a bricks’ 

manufacturing plant). If the predictive 

performance of the training set is opposite to that 

of the validation set, the process of training is 

stopped to avoid overfitting. 

The third step involves testing the 

performance of the trained ANN model using a 

set of experimental data independent from the 

training data, obtained in the simulated and real 

WWTP, meaning a set of new input and output 

data (independent input and dependent output 

data). In this study, the performances of ANNs 

were also compared with respect to mean squared 

error (MSE), normalized mean squared error 

(NMSE), linear correlation coefficient (r), mean 

absolute error (MAE) and mean absolute percent 

error (% Error). These performance measures are 

defined in Eqs.(2-6) [21]: 
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where, N is the total of training or testing 

experiments;  

yi is network output for experiment i;  

di is desired output for experiment i;  

xi is network output;  

x  is average network output;  

di is desired output, and d  is the average 

desired output. 

Once the ANN is trained the weights are 

then frozen, the testing set is fed into network, 

and the network output is compared with the 

desired output [22-26]. 

 

Results and discussion 

The industrial effluents produced by a 

productive company, meaning a manufacturing 

unit of bricks and other ceramic products (as real 

industrial effluents), or prepared synthetic 

wastewaters based on the owner formulations 

related to manufacturing process, are 

characterized as in Table 1, considering some 

quality indicators like the total suspended solids, 

turbidity, conductivity, colour, chemical oxygen 

demand, total hardness and chlorides content, 

among others. 

The experimental results after the proposed 

chemical-mechanical treatments (i.e. coagulation-

flocculation and sedimentation) of synthetic 

wastewaters, or real effluent samples treated with 

coagulation agent (ferric sulphate, 7.5 mg Fe
3+

/L, 

without or with optional addition of indigene 

bentonite, 0.5 g/L) and flocculation agent 

(PONILIT GT-2 anionic polyelectrolyte,  

0.05-1.0 mg/L) were processed for training and 

testing of an artificial neural model (more than 

110 experimental data for mechanical- 

chemical treatment of synthetic wastewaters or 

real effluents).    
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Table 1 

Principal initial characteristics of studied industrial effluent. 

Quality indicator Measurement units Synthetic wastewater Real effluent 

pH - 6.5 - 7.0 6.83  0.25 

Conductivity μS/cm 250 - 270 265  20 

Suspended solids mg/L 95 - 500 112  12   

Turbidity FTU 50 - 250 85  5  

COD mg O2/L 52.7 - 72.0 64  10 

Temporary hardness °G 3.07 - 3.7 3.27  1.2 

Total hardness °G 14.25 - 14.76 14.53  3.5 

Chlorides mg/L 75.0 - 75.1 75.1  10.5 

 

 

The recommendation of such treatment 

system (mechanical-chemical treatment process, 

consisting of coagulation-flocculation followed by 

sedimentation) applied for industrial wastewaters 

produced in a manufacturing company of bricks 

and other ceramic products was found eligible and 

efficient, being reported in other authors’ works 

[15-16] in which the experimental variation fields 

for the principal operating or desired input 

variables (e.g., operating parameters and some 

chemicals doses) were found for the highest 

removals of turbidity (> 90%), colour (>80-90%) 

and COD (> 40-50%), considered as desired 

single outputs and calculated by processing the 

output data based on statistic formulations, or 

well-defined relationships as Eq.(1).  

Thus, it was permitted the development of a 

neural model (i.e. neural model with a single 

hidden layer) by using an artificial neural network 

of multilayers perceptron type applied in the case 

of studied industrial effluent treatment, and its 

validation for real treatment data performed 

considering inputs from experimental variation 

field or overfitting and overtraining ones (from 

outside of experimental variation fields).  

The ANN is developed in NeuroSolutions 

version 6.02 (Trial version). The transfer or 

activation function used for the hidden layer is of 

‘tangent hyperbolic axon’ type (TANH). Error 

minimization is performed by using the algorithm 

Levenberg-Marquardt. It is worked with  

100,000 epochs and the threshold of 10
-10

. There 

were done 110 series of experiments, 80% for 

network training, the rest for testing (20%).  

The artificial neural network model and its 

validation for both Y1 (turbidity) and Y2 (colour) 

removal functions (real output data) are presented 

in Table 2 (ANN Modelling for Y1 and Y2),  

Figure 1 (Training performance), Figure 2  

(Cross validation performance) and Figure 3 

(Testing performance for 10% of  

experimental data).  
Table 2 

Artificial neural network models for Y1 (turbidity) and Y2 (colour) removals. 

(1) ANN Modeling for Y1: MLP (3:10:1) (2) ANN Modeling for Y2: MLP (3:10:1) 
  

  

(1a) Training 10% (2a) Training 10% 

  
(1b) Cross Validation - CV 10% (2b) Cross Validation - CV 10% 
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For the Y1 output (turbidity removal), the 

best neural model is MLP (3:10:1). The choice of 

model was done based on the  

performances obtained at the processing steps of 

training and cross validation such as  

MSEtraining= 0.747·10
-3

 (mean squared errors for 

network training); MSEvalidation= 0.969·10
-3

 (mean 

squared errors for network validation); linear 

correlation coefficient - rtraining= 0.9999 (for 

network training) and rvalidation= 0.9996 (for ANN 

model validation), and average relative  

error - eRelav., training= 0.367% (for artificial 

network training) and eRelav., validation= 0.525% (for 

ANN model validation).  

Neural modelling of Y2 output (colour 

removal) by using MLP model (3:10:1) leads to 

the following performances: MSEtraining=  

0.307·10
-3

; MSEvalidation= 0.002·10
-3

; linear 

correlation coefficient - rtraining= 0.9999 and 

rvalidation= 0.9999; average relative error -  

eRelav., training= 0.1996% and eRelav., validation= 

0.039%.  
 

 
 

(a) Y1, ANN (Y1, exp) (b) Y2, ANN (Y2, exp) 

 

Figure 1. Training performance – YANN (Yexp). 
 

  

(a) Y1, ANN (Y1, exp) 

 

(b) Y2, ANN (Y2, exp) 

Figure 2. Cross validation performance – YANN (Yexp). 
 

 

The obtained artificial neural models were 

applied in case of real Romanian treatment system 

(industrial scale setup, i.e. mechanical-chemical 

treatment system of industrial wastewaters 

produced by a manufacturing plant of bricks, Iasi, 

Romania) considering some input data from 

outside of experimental field (overfitting data) 

and obtained output results, in order to find the 

optimal input and output values in case of the real 

studied industrial effluent treatment. The effluent 

treatment optimization using the proposed ANN 

model leads to results summarized in Table 3. 

The proposed optimum of neuronal MLP 

(3:10:1) model was verified through real 
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experiments being found correspondent for the 

output values, meaning Y1, opt = 91.8% (for 

turbidity removal) and Y2, opt = 92.8% (for colour 

removal). Transposed in real input values, the 

optimal operating data (desired input data) are 

corresponded to a temperature of 18°C (z1), a 

polymer dose of 2.0 mg/L (anionic polyelectrolyte 

PONILIT GT-2) (z2) and an agitation time of  

30 minutes (z3) for turbidity removal (Y1), and a 

temperature of 26 °C (z1), a polyelectrolyte dose 

of 1.5 mg/L (z2) and 30 minutes of agitation (z3) 

for colour removal (Y2), respectively. 

The results experimentally verified for the 

industrial effluent treatment system  

(decentralized system) applied for industrial 

effluents of a Romanian manufacturing plant of 

bricks (Iasi, Romania) are adequate and  

can drive optimally the industrial effluent 

treatment in the corresponding  

operating conditions (as desired  

input data) for highest efficiencies in terms of 

turbidity and colour removals (as desired  

output data).  

  

(a) Y1, ANN (Y1, exp): % Error= 0.366984 (b) Y2, ANN (Y2, exp): % Error=  0.199624 

 

Figure 3. Testing (for 10% of experimental data) performance – Yi, ANN (Yi, exp). 
 

 

Table 3  

Application of ANN model - MLP (3:10:1) for real input data, from outside of experimental field,  

and optimal output values found. 

Y1 (turbidity removal)  Y2 (colour removal) 

z1 

(T, °C) 

z2 
.
10

-1
 

(Cp, mg/L) 

z3 

(t, min) 

Y1, ANN 

(%) 

 

 

z1 

(T, °C) 

z2 
.
10

-1
 

(Cp, mg/L) 

z3 

(t, min) 

Y2, ANN 

(%) 

5.5 12.5 20 24.9  5.5 12.5 20 32.6 

10 5 10 40.6  10 5 10 39.8 

10 20 25 51.9  10 20 25 60.5 

24 20 10 74.6  24 20 10 82.3 

26 15 30 89.9  26 15 30 92.2  

21.6 10 20 80.5  21.6 10 20 90.9 

17 15 20 67.3  17 15 20 71.9 

13.5 10 20 56.4  13.5 10 20 58.7 

15 10 20 60.9  15 10 20 65.0 

18 20 30 91.7  18 20 30 91.1 

 

 

Conclusions 

Series of mechanical-chemical treatment 

experiments were performed for industrial 

effluents produced in a manufacturing plant of 

bricks and other ceramic products (simulated 

experiments with synthetic industrial effluents 

prepared at laboratory setup, as well as real 

industrial effluents at industrial setup) for finding 

an adequate artificial neural network (ANN) 

model for high removal of turbidity and colour 

(more than 80-90%), as desired output data. 

Thus, it is proposed the ANN model – MPL 

3:10:1 which was tested and validated as 

performance in statistic terms, being found very 
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good for the industrial effluent treatment system, 

meaning industrial setup (error % = 0.191-0.364). 

The optimal input and output values 

(desired values) are found for the mechanical-

chemical treatment system (i.e. pre-treatment 

before discharging treated effluent in the local 

urban sewer system, based on coagulation-

flocculation followed by sedimentation, applied in 

the real case of a Romanian manufacturing plant 

of bricks, Iasi, Romania), together with the 

experimental results from outside of training 

experimental field of ANN model (i.e. real results 

performed for input values from outside of 

experimental variation field of proposed ANN 

model) in order to achieve the highest colour and 

turbidity removals as most desired outputs. 

The calculated results sustain the 

application of proposed ANN model for an 

industrial effluent treatment system (as 

mechanical-chemical treatment system) because 

of the very good industrial effluent treatment 

performance and minimization of any additional 

treatment cost. 
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