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Abstract. In this work, taking the Pr(III) ion as a suitable case study, the authors test the capacity of a 

series of Gaussian Type Orbitals (GTOs) basis sets to account for the atomic spectra of lanthanide ions. 

An extended relevance of this assessment can be found in modeling the luminescence of  

lanthanide-based materials. It was selected the Pr(III) case because it shows a rather rich collection of 

experimental data, emerging from the f
2
 and fd configurations. The energy barycenters of spectral 

multiplets can be equated analytically in terms of the so-called Slater-Condon parameters.  

By multi-configurational ab initio procedures, with basis sets from existing GTO repositories, the 

calculated ff transitions are moderately higher than the experimental values, while the relative 

energies of fd states undergo both under- and over-estimation. The GTO shortcomings, that are 

impacting the accuracy, were debated, the critical perspective spreading the seeds of future 

development.  
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Introduction 

The electronic structure of lanthanide 

compounds is a difficult and tricky subject 

because, as the authors showed in their early 

pioneering contributions [1-3] the f shell of  

Ln
3+

 ions in compounds adopts a non-aufbau 

situation, carrying unpaired electrons placed at 

lower energy than doubly occupied orbitals 

belonging to the ligands. Because of this situation, 

the routine computation methods are not working. 

Our strategy [1-3] consisted in going directly to 

multi-configurational wave-function theory 

(WFT) [4] procedures, with guess orbitals 

prepared from fragments: naked lanthanide ions 

and the remainder of the molecule. Applications 

made with this strategy were proven to be 

surprisingly successful in explaining and 

reproducing the magnetic properties of lanthanide 

compounds [1-3]. Another barrier against the 

routine treatment of lanthanide compounds is the 

fact that the quite popular Density Functional 

Theory (DFT) [5] procedures are, in principle, not 

allowed for lanthanide compounds, since most of 

Ln
3+

 ions show degenerate ground states, 

offending then basic DFT theorems, demanding 

strictly non-degenerate fundamental states [6]. 

However, with a certain care, one may design 

numeric experiments based on DFT calculations, 

enabling the extraction of the parameters needed 

in the simulation of spectral properties [7-14].  

In particular, our research was focused on states 

implied in the luminescence of doped lanthanide 

systems, with application in domestic lighting 

appliances [15].  

To underpin the extended relevance  

of the rather pedantic assessments debated in  

this work, it must be pointed out the use of  

lanthanide-based materials as phosphors (from 

Greek phosphoros = light bearer), alleviating the 

emission of LED (light-emitting diodes) devices 

[16]. As is known, the LEDs are emitting usually 

at high energies, near violet and ultraviolet 

[17,18], so the phosphors are helping, with 

components of yellow-red radiation, to compose a 

white-light spectrum [19-22].
 

The process of 

obtaining low-energy radiation implies, in the 

case of lanthanide ions, a high-energy fd orbital 

transition, induced by the LED emission, followed 

by step-wise decay in a photon cascade,  

via intermediate excited states [23].  

Combining our previous experience in 

WFT [1-3] or DFT [7-14] techniques and 

phenomenological spectral models [24], it 

occurred to us that the computational  

account of optical properties may be less accurate, 

in comparison with the surprisingly good 

simulation of magnetic quantities [1-3].
  

This situation prompted us to perform an 

extensive assessment of the performance of WFT 

methods on the platform of various Gaussian 
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Type Orbitals (GTOs) available in modern 

databases. It must be noted that the  

actual calculation methods, both in the WFT and 

DFT branches, are deeply based on GTO as  

basis sets [25,26], i.e., as building blocks  

of atomic orbitals. The quasi-totality of  

electronic structure codes, including the most  

popular ones, such as Gaussian [27],  

Gamess [28], or Orca [29] are working  

with GTO bases. It was selected as a case  

study the triple positive praseodymium ion, 

Pr(III), because it offers a rich record of 

experimental data.  

 

Computational details  

The calculations were done with the 

GAMESS suite [28], in the frame of the Complete 

Active Space Self Consistent Field (CASSCF) 

method, using an active space with  

12 orbitals (comprising the 4f and 5d atomic 

shells) and two electrons (corresponding to  

the f
2
 and fd configurations). The various used 

basis sets are detailed in the main text.  

The analytic derivations leading to the resolution 

of spectral terms as functions of Slater-Condon 

integrals were helped by Mathematica
TM

 

computer algebra code [30,31]. 
 

Results and discussion 

For the sake of completeness, here it will  

be presented the theoretical backgrounds of  

the performed analysis, reconsidering the 

experimental data themselves. The experimental 

data of free lanthanide atoms and ions are 

tabulated in early collections [32], being also 

available in nowadays internet databases [33].  
The interest is in spectra emerging from f

n
 and  

f
n-1

d configurations, the last type resulting from 

4f5d orbital promotions. However, not all the 

triply ionized lanthanide ions have enough 

experimental data. For instance, Gd(III) shows 

only one excited state from the f
7
 configuration 

(out of the many possible, in principle) and  

no f
6
d state. In turn, Pr(III) presents a rich record 

of terms with f
2
 and fd parentage, making  

it best suited for the aimed analysis. As is  

well known, the spectral terms follow a  

general 
2S+1

[L]J
 
labeling, as function of the orbital, 

spin, and spin-orbital quantum numbers, L, S and 

J, respectively. The [L] notation stands for a  

letter symbol assigned to a given integer L  

(e.g., S for L= 0, P for L= 1, and so on).  

Although the spin-orbit coupling is important in 

the physics and chemistry of lanthanides, it is 

convenient to eliminate it from the active 

parameters of the present study. This can be 

realized by taking the barycenter of the  

J multiplets emerging from a given L and S  

(with J running from |L-S| to L+S), by weighted 

summations, by Eq.(1).  

 

   (   )  
∑ (    ) (     )   
       

∑ (    )   
      

              (1) 

 
The experimental data on J multiplets of 

Pr(III) ion [33]
 
and corresponding averages are 

shown in Table 1 for the f
2
 configuration and in 

Table 2 for the fd case. The Pr(III) also benefits 

from the simple equating of spectral term energies 

in terms of the so-called Slater-Condon integrals, 

the formulas being posted also in Tables 1 and 2, 

respectively. The Slater-Condon (SC) integrals 

[34,35] are used in the theory of atomic spectra, 

defined as function of the radial parts of atomic 

orbitals, R(r). For two atomic shells, a and b, 

there are two types of SC parameters, classified 

along with an integer k:  
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where, r1 and r2 are the distances of the two 

electrons from the nucleus. Denoting  

by la and lb the secondary quantum numbers of the 

involved shells, the k indices are running from 0 

to min(2la,2lb) in the case of Fk terms, while 

between |la-lb| and la+lb for the Gk ones.  

When a= b, namely for intra-shell case, the Fk and  

Gk types become identical, keeping only the first 

notation. Thus, the two-electron integrals 

describing Coulomb and exchange effects within  

f
2
 configuration can be presented by the following 

SC parameters: F0
ff
, F2

ff
, F4

ff
 and F6

ff
.  

The fd configuration is accounted by the F0
fd

, F2
fd

 

and F4
fd

 parameters for the Coulomb part  

and by G1
fd

, G3
fd

 and G5
fd

 for exchange.  

In principle, one may consider the intra-shell  

d-type series, F0
dd

, F2
dd

, F4
dd

, but since the d
2
 

excited configuration is not achieved in Pr(III) 

ion, this part will be discarded. One must note that 

the F0 parameters are neglected from spectral 

problems, vanishing when the relative differences 

with respect to the ground state are performed. 
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Table 1 

The list of spectral terms with f
2
 parentage, for Pr

3+
 ion.  

2S+1
[L] J E(L,S,J) Eav(L,S) ΔEav(L,S) Energy formulas 

3
H(f

2
) 4 

5 

6 

0 

2152.09 

4389.09 

2446.4 0 0 

3
F(f

2
) 2 

3 

4 

4996.61 

6415.24 

6854.75 

6265.83 3819.43     
  
     

  
      

  
 

1
G(f

2
) 4 9921.24 9921.24 7474.84     

  
      

  
     

  
 

1
D(f

2
) 2 17334.39 17334.39 14887.99     

  
     

  
      

  
 

3
P(f

2
) 0 

1 

2 

21389.81 

22007.46 

23160.61 

22579.47 20133.07     
  
     

  
       

  
 

1
I(f

2
) 6 22211.54 22211.54 19765.14     

  
     

  
     

  
 

1
S(f

2
)   - - -     

  
      

  
       

  
 

The columns with J and E(L,S,J) headers are experimental data for spin-orbit multiplets, 
2S+1

[L]J .  

The Eav(L,S) and ΔEav(L,S) columns contain weighted averages (see Eq.(1)) and their shift, with ground state in 

origin. The last column gives analytical energy formulas expressed through the Slater-Condon parameters.  

The energy values are in cm
-1

. 

 

Table 2 

The list of spectral terms with fd parentage, for Pr
3+

 ion.  

The explanations are similar to the caption of previous table. The U is an overall shift, not discussed here. 

 

 
 

The many-electron wavefunctions can be 

generally presented as configuration interaction 

(CI) problems, handling Hamiltonian matrix 

elements that, in the case of the atom [36], contain 

linear expressions of Slater-Condon integrals, 

standing for the inter-electron effects. There are 

also involved one-electron integrals, say hf and hd, 

for the case of d and f orbitals, which will not 

enter into the focus of the actual discussion.  

It follows a somewhat pedantic derivation 

of the formulas outlined in Tables 1 and 2, 

obtainable with the details shown in the 

Supplementary Material and the strategy 

explained in the following. This is a shortcut that 

is affordable when a given spectral term appears 

only once in the list of electronic states. Thus, for 

the f
2
 case, the spectral terms are: 

3
H, 

3
F, 

3
P, 

1
I, 

1
G, 

1
D, and 

1
S. Having no repeated couples of 

2S+1
[L] J E(L,S,J) Eav(L,S) ΔEav Energy formulas 

1
G(fd) 4 61170.95 61170.95 58724.55        

  
     

  
     

  
     

  
     

  
 

3
F(fd) 

2 

3 

4 

61457.48 

64123.54 

66518.01 

64514.97 62068.57        
  
     

  
    

  
     

  
     

  
 

 

3
G(fd) 3 

4 

5 

63355.94 

65639.95 

67899.32 

65968.28 63521.88        
  
     

  
     

  
     

  
     

  
 

3
H(fd) 4 

5 

6 

63580.59 

65239.39 

68077.83 

65905.16 63458.76        
  
    

  
     

  
     

  
   

  
 

1
D(fd) 2 65321.67 65321.67 62875.27       

  
     

  
    

  
     

  
      

  
 

3
D(fd) 1 

2 

3 

66967.72 

68411.51 

68495.57 

68161.98 65715.58       
  
     

  
    

  
     

  
      

  
 

3
P(fd)

 
1 

0 

2 

70755.33 

70842.93 

72185.1 

71559.38 69112.98        
  
     

  
   

  
     

  
      

  
 

1
F(fd)

 
3 71724.77 71724.77 69278.37        

  
     

  
    

  
     

  
     

  
 

1
H(fd)

 
5 75265.66 75265.66 72819.26        

  
    

  
     

  
     

  
   

  
 

1
P(fd)

 
1 78776.38 78776.38 76329.98        
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quantum numbers means that no configuration 

interaction takes place, and then one does not 

have to solve the complete eigenvalues problems.  

In turn, one may use an algebraic theorem 

[37] stating that the sum of eigenvalues in a 

Hamiltonian matrix equals the sum of diagonal 

matrix elements (Eq.(4)). 
 

∑     ∑                      (4) 
 

The Hamiltonian matrices for a given 

couple of (L,S) quantum numbers are factored in 

blocks running on the Lz={-L, -L+1, …, 0 , …,  

L-1, L} and Sz={-S, …, S} projections. States with 

different (L,S) definitions are found together in a 

Hamiltonian block having a certain (Lz,Sz) 

common set of projections. The energy of a term 

with (L,S) orbital and quantum numbers is 

repeated (2S+1)(2L+1) times (the term 

degeneracy), with the EL,S quantity appearing as 

an eigenvalue in each subsequent (Lz,Sz) 

Hamiltonian block. In other words, considering 

only the positive projections, the eigenvalues of 

each (Lz, Sz) block are containing the energies of 

all EL,S terms having L Lz and S Sz. For negative 

projections, one must reverse the sense of 

inequalities. One may devise a series of 

successive subtractions, yielding at the end the 

energies of EL,S states, provide that each 
2S+1

[L] 

term appears only once in the whole list of atomic 

states.   

The matrix element with the highest spin or 

orbital projection appears only in one 

configuration, with their values (or analytic 

expressions) equalling the energy of the term with 

maximal respective quantum numbers, L
max

 or 

S
max

. Table 3 shows the summations obtainable 

from the eigenvalues of the Hamiltonian blocks of 

the f
2
 configuration. One may see that the 

individual energies of all the spectral terms  

can result from corresponding differences 

between the cells of the table. For instance:  

 (   )  ∑      (          )
 ∑      (            )

. The 

point is that it was avoided solving the whole 

secular equations, being necessary only to equate 

the diagonal elements, Hii, by virtue of Eq.(4). 

The evaluation of the diagonal elements is given 

in the Supplementary Material.  

Thus, handling the content of Table 3, with 

the help of data from Supplementary Materials, 

the equations given in Table 1 for the f
2
 

configuration can be obtained. The fd case from 

Table 2 can be handled in a similar way. It must 

be pointed out that, although certain term labels 

from f
2
 parentage are also found in the fd list  

(e.g., 
3
F), these do not enter in a configurational 

interaction, because of the different parity, acting 

as supplementary quantum number. The fit of 

experimental data handled in Tables 1 and 2 to the 

equations detailed in their right-side columns 

yields the following parameters: F2
ff
=316.67 cm

-1
, 

F4
ff
= 58.73 cm

-1
, F6

ff
=5.46 cm

-1
, F2

fd
=222.03 cm

-1
, 

F4
fd

= 30.01 cm
-1

, G1
fd

= 326.05 cm
-1

, G3
fd

= 34.48 

cm
-1

, G5
fd

= 7.37 cm
-1

, and U= 54701.67 cm
-1

.  

In the following, the authors will compare 

the experimental Slater-Condon parameters with 

those resulting from ab initio calculations 

performed with different basis sets. The data are 

presented in Table 4. The acronyms of basis sets 

are formed non-systematically, e.g., from the 

initials of the authors, like SBKJC (Stevens, Bash, 

Krauss, Jensen, Cundari), or from the descriptions 

of components, like ccpvtzdk (correlation 

consistent triple-zeta Douglas-Kroll), or even by 

place names (Cologne, Sapporo). There is also no 

simple principle able to organize the bases in a 

certain hierarchy. The first lines (SBKJC, 

CRENBL) are bases with effective core potentials 

(ECP), mimicking the action of inner orbitals, 

while their true functions are removed. The other 

entries correspond to all-electrons treatment. 
 

 

Table 3 

The sums of eigenvalues contained in each (Lz, Sz) Hamiltonian block, for the spectral terms  

resulted from the f
2
 configuration. 

Lz\Sz 1 0 -1 

6   E(
1
I)   

5 E(
3
H) E(

3
H)+E(

1
I) E(

3
H) 

4 E(
3
H) E(

3
H)+E(

1
I)+E(

1
G) E(

3
H) 

3 E(
3
H)+E(

3
F) E(

3
H)+E(

3
F)+E(

1
I)+E(

1
G) E(

3
H)+E(

3
F) 

2 E(
3
H)+E(

3
F) E(

3
H)+E(

3
F)+E(

1
I)+E(

1
G)+E(

1
D) E(

3
H)+E(

3
F) 

1 E(
3
H)+E(

3
F)+E(

3
P) E(

3
H)+E(

3
F)+E(

3
P)+E(

1
I)+E(

1
G)+E(

1
D) E(

3
H)+E(

3
F)+E(

3
P) 

0 E(
3
H)+E(

3
F)+E(

3
P) E(

3
H)+E(

3
F)+E(

3
P)+E(

1
I)+E(

1
G)+E(

1
D)+E(

1
S) E(

3
H)+E(

3
F)+E(

3
P) 

-1 E(
3
H)+E(

3
F)+E(

3
P) E(

3
H)+E(

3
F)+E(

3
P)+E(

1
I)+E(

1
G)+E(

1
D) E(

3
H)+E(

3
F)+E(

3
P) 

-2 E(
3
H)+E(

3
F) E(

3
H)+E(

3
F)+E(

1
I)+E(

1
G)+E(

1
D) E(

3
H)+E(

3
F) 

-3 E(
3
H)+E(

3
F) E(

3
H)+E(

3
F)+E(

1
I)+E(

1
G) E(

3
H)+E(

3
F) 

-4 E(
3
H) E(

3
H)+E(

1
I)+E(

1
G) E(

3
H) 

-5 E(
3
H) E(

3
H)+E(

1
I) E(

3
H) 

-6   E(
1
I)    
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At first glance on Table 4, the 

overestimation of the F2
ff
 parameter is visible in 

all cases, with a ratio computed/experimental 

~1.43, on average. The calculated F4
ff
 and F6

ff
 

parameters are closer to the experimental ones, 

with the respective averaged ratios of 1.22 and 

1.07. A surprisingly good ratio, 1.04, is found for 

the F2
fd

 inter-shell parameter. All the other 

parameters are rather strongly underestimated, 

with 0.80 for F4
fd

, 0.75 for G1
fd

, 0.87 for G3
fd

 and 

0.69 for G5
fd

.  

Measuring the accuracies by the ratio of 

computed vs. experimental energies of the 

spectral terms, the series of the ff transitions 

undergo an overall overestimation of excited 

levels, with the E
calc

/E
exp

 ~1.37 averaged ratio. For 

the fd transitions, the relative gaps of the terms 

with respect to the lowest one (
1
G) were 

measured. In this way, it was discarded the 

incidence of the U term, which does not make 

the object of actual discussion. In this convention, 

the relative gaps on the fd-type multiplets depend 

only on the Fk
fd

 and Gk
fd

 inter-shell parameters. As 

average on all the states higher than 
1
G(fd), the 

ratio of E
calc

/E
exp

 ~1.3 is, globally good: ~1.09. 

However, at a closer look, one may note that 

some states are underestimated, the average on 

sub-unitary ratios being 0.86, while the other ones 

are overestimated, the ratio on this subset being 

~1.27, as mean value. The Supplementary 

Materials shows, in Figures S1 and S2 the 

computed spectral lines, in comparison with 

experimental references. 

From a synoptic perspective, one may 

conclude the semiquantitative performance of the 

existing basis sets with respect to the reproduction 

of atomic spectra and their determining 

parameters. This may be a collateral consequence 

of the customary methodology for producing  

basis sets. The procedure consists of  

minimizing the total energy of a collection of  

systems, the neutral atom, and a few  

simple compounds incorporating the given  

atom [38-47].  

A suggestion is that, in turn, stating as a 

criterion the good account of spectral states  

for the atom and its most important oxidation 

states may be a better way, closer to the first 

principles of action. Equivalently, the retrieval  

of Slater-Condon parameters closer to the 

experimental values can be set as an optimization 

target. The perspective of tuning a basis by 

calibrating the basic atomic parameters is 

inhibited in the calculation scaffolds  

of Gaussian-type orbitals because, in this frame, 

the integrals are expanded by factoring on 

Cartesian components, x, y, and z, rather  

than dichotomizing in radial and angular 

coordinates. Then, the Gaussian-based calculation  

engines are ignoring the systematizing power,  

substantiated by spherical symmetry (i.e. the 

theoretical corpus defining the Slater-Condon 

integrals). However, as it is showed here, the  

SC parameters can be recovered indirectly and, in 

principle, chosen as pivots in the fine tuning of 

basis sets. 
 

Table 4 

The Slater-Condon parameters resulted from computed CASSCF states of Pr(III) ion,  using the basis sets 

whose acronyms and references are given on the first column. The values are in cm
-1

. 

# Basis\Parameters   
  

   
  

   
  

 

 

  
  

   
  

   
  

   
  

   
  

 

0 Exp. (re-analyzed) 316.7 58.7 5.5 

 

222.0 30.0 326.1 34.5 7.4 

1 SBKJC [38] 439.9 56.5 6.0 

 

237.2 17.7 570.4 36.8 5.2 

2 CRENBL [39] 458.0 59.1 6.3 

 

242.9 17.9 552.9 36.1 5.1 

3 COLOGNE [40] 459.9 59.7 6.4 

 

242.3 17.7 310.5 28.5 4.5 

4 AHGBS5 [41] 467.3 60.6 6.4 

 

237.0 17.2 301.8 27.9 4.4 

5 CCPVDZDK3 [42] 508.4 66.6 7.1 

 

252.5 18.1 276.8 27.1 4.4 

6 CCPVTZDK3 [42]  504.5 65.9 7.0 

 

240.6 17.1 271.8 26.3 4.2 

7 CCPVDZX2C [42]  504.3 66.0 7.0 

 

251.6 18.0 281.2 27.4 4.4 

8 JORGE_ATZP [43] 501.3 65.4 7.0 

 

224.4 15.7 248.6 23.8 3.8 

9 JORGE_TZP [43]  503.4 65.7 7.0 

 

241.6 17.1 264.7 25.5 4.1 

10 JORGE_TZPDKH [43]  508.5 66.6 7.1 

 

239.7 16.8 254.5 24.7 4.0 

11 SAPPORO_DKH3_DZP [44] 509.3 66.6 7.1 

 

247.2 17.7 278.1 27.0 4.4 

12 SAPPORO_DKH3_TZP [44]  500.6 65.3 7.0 

 

238.6 17.0 273.0 26.3 4.2 

13 SAPPORO_DKH3_QZP [44]  473.8 61.5 6.5 

 

238.5 17.3 298.4 27.8 4.4 

14 SARC2_QZV_DKH2 [45] 467.6 60.6 6.5 

 

237.5 17.3 302.8 28.0 4.5 

15 SARC2_QZVP_DKH2 [45]  467.6 60.6 6.5 

 

237.5 17.3 302.8 28.0 4.5 

16 SARC2_QZVP_ZORA [45]  467.2 60.6 6.4 

 

237.5 17.3 303.2 28.0 4.5 

17 SARC2_QZV_ZORA [45]  467.2 60.6 6.4 

 

237.5 17.3 303.2 28.0 4.5 

18 SARC_ZORA [46] 431.8 55.7 5.9 

 

257.3 19.4 363.0 32.6 5.2 

19 SARC_DKH2 [46]  431.9 55.7 5.9 

 

257.6 19.4 363.1 32.6 5.2 

20 UGBS [47] 465.5 60.2 6.4 

 

277.5 20.6 362.0 33.7 5.4 
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Another caveat about the hidden drawbacks 

of GTOs lies in the architecture of their 

primitives. Thus, the atomic orbitals with a  

given secondary quantum number, l, are made  

of r
l
exp(-r

2
) pieces, the set of  being adjustable. 

Usually, it is believed that the shortcomings of 

GTOs consist in using the exp(-r
2
) exponential 

instead of the Slater-type one, exp(-r), expected 

to be more suitable for atoms, if recall the exact 

solutions for the hydrogen atom. A less observed 

weakness stays in the rigid nature of the pre-

exponential factor, r
l
, for a given l shell. Thus, the 

4f orbitals are made only by r
3
exp(-r

2
) 

primitives, which is qualitatively reasonable 

considering the node-less hydrogenic 4f orbital, 

r
3
exp(-Zr/3), and also that, intuitively, the mixing 

of higher 5f or 6f functions is not expected in the 

chemistry of lanthanides. On the other hand, the 

6d shell, of interest for the exposed problems, is 

expanded only with the r
2
 factor, lacking useful 

degrees of freedom in the construction of the 

wavefunction. By comparison, in the code called 

Amsterdam Density Functional (ADF) [48], one 

of the few packages based on Slater-type orbitals, 

the construction of d orbitals includes r
2
, r

3
 and r

4
 

factors, the higher powers being necessary 

ingredients for specific features of outer orbits. 

Such intrinsic limitations of GTO frame, inherited 

from the early ages of computational chemistry, 

are probably impeding the performance of basis 

sets, particularly in special instances such as the 

excited states of heavy elements.  

Here, the GTO principles for the less 

perfect account of Slater-Condon parameters are 

criticized because, at least in the debated 

particular case, the accuracy in their retrieval is 

directly related with the construction of the basis 

set. One may counter-opine that improvements 

are possible with extended methods, such as 

larger active spaces or second-order perturbations 

[49,50]. This may be true, as technical realism, 

but yet disputable at the conceptual level, because 

what is expected from the post-CASSCF 

perturbation correction is the gain in the so-called 

correlation effects, coming from the interaction of 

the many configurations expected in the enlarged 

account. However, one may advocate that the 

Pr(III) ion, in its f
2
 and f

1
d

1
 orbital configurations, 

is almost free of correlation effects. More 

concretely, the states encountered in a large 

energy domain, in the range of 10
5
 Hartree, span 

different orbital and spin quantum numbers, i.e., a 

situation precluding their mutual configuration  

interaction. Therefore, whatever attainable  

 

 

correction may be spurious, because, as a matter 

of principle, in the absence of configuration 

interactions over a large energy window, a good 

result should be expected in the CASSCF mode. 

The authors are in disfavour of second-order post-

CASSCF increments [49,50], because these are 

prone to arbitrary conventions and do not obey the 

self-consistency principles. Conceptually, the 

CASSCF techniques are the perfect choice to 

describe optical and magnetic properties of 

lanthanide compounds, transparently accounting 

the many-electron nature of wavefunctions.  

 

Conclusions  

Taking the case of Pr(III) ion as a fortunate 

situation where rich experimental data on spectral 

terms are available and, at the same time, their 

theoretical expressions can be obtained 

analytically, the authors assess the performance of 

various basis sets in accounting for the ff and  

fd transitions. The incidence of spin-orbit 

coupling is eliminated by corresponding weighted 

averages. A pedantic derivation of the spectral 

term energies, as function of Slater-Condon 

parameters, is given. It was applied a shortcut that 

avoids the resolution of the complete eigenvalue 

problem, using only the diagonal elements of the 

Hamiltonian matrix.   

The CASSCF calculations with two 

electrons in the space of twelve orbitals from 4f 

and 5d sets are performed with a series of twenty 

GTO basis sets, forming the quasi-totality of 

available data. The performance in retrieving the 

computed spectral terms (in comparison to the 

experiment) is satisfactory, but the authors 

suggest the hidden GTO drawbacks that may 

impede a better match. A conceptual strategy for 

improving the GTO methodology is outlined. It is 

impossible to apply the suggested hints here, 

because this would imply a prohibitive technical 

effort. However, we put the issue on the table, as 

a matter of critical debate and as an 

announcement about our further commitment on 

this issue.  
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