SYNTHESIS AND CHARACTERISATION OF NEW {Fe₂CrO} HETEROTRINUCLEAR IRON-CHROMIUM CLUSTERS

Viorina Gorinchoy[®]^a, Olesea Cuzan[®]^{a*}, Silvia Melnic[®]^{a,b}, Oleg Petuhov[®]^a, Sergiu Shova[®]^a

^aInstitute of Chemistry, 3, Academiei str., Chisinau MD 2028, Republic of Moldova ^bState University of Medicine and Pharmacy "Nicolae Testemițanu", 165, Stefan cel Mare si Sfant, blvd., Chisinau MD 2004, Republic of Moldova ^{*}e-mail: olesea_cuzan@yahoo.com, olesea.cuzan@ichem.md

Abstract. Two new μ_3 -oxo trinuclear heterometallic Fe₂^{III}Cr^{III} complexes with furan-2-carboxylic and salicylic acids with the composition: [Fe₂CrO(C₄H₃OCOO)₆(CH₃OH)₃]NO₃·0.5CH₃OH and [Fe₂CrO(C₆H₄(OH)COO)₇(CH₃OH)₂]·2DMA were synthesized starting from iron(III) and chromium(III) salts mixture. The complexes structures were confirmed by elemental analysis, IR, Mössbauer spectroscopies, and X-ray analysis. The atomic absorption spectroscopy confirmed that the iron: chromium ratio is 2:1. The thermal properties of both heteronuclear complexes have been investigated in oxidizing and inert atmospheres revealing the stability of the trinuclear core up to 170 and 220°C, respectively.

Keywords: heteronuclear μ_3 -oxo complex, Fe₂Cr cluster, X-ray diffraction, thermal analysis.

Received: 11 September 2021/ Revised final: 10 December 2021/ Accepted: 14 December 2021