PSEUDO JAHN-TELLER ORIGIN OF THE PROTON-TRANSFER ENERGY BARRIER IN THE HYDROGEN-BONDED [FHF]⁻ SYSTEM

Natalia Gorinchoy[®] ^{a*}, Iolanta Balan[®] ^a, Victor Polinger[®] ^b, Isaak Bersuker[®] ^{a,c}

^aInstitute of Chemistry, 3, Academiei str., Chisinau MD-2028, Republic of Moldova ^bUniversity of Washington, 109, Bagley Hall Box 351700 Seattle, WA 98195-1700, USA ^cUniversity of Texas at Austin, Austin, Texas 78712, USA ^{*}email: ngorinchoy@yahoo.com; natalia.gorincioi@ichem.md

Abstract. The results of *ab initio* calculations of the adiabatic potential energy surfaces for the protonbound [FHF]⁻ system at different F-F distances have been rationalized in the framework of the vibronic theory. It is shown that the instability of the symmetric $D_{\infty h}$ structure at increased F···F distances and the proton displacement to one of the fluorine atoms are due to the pseudo Jahn–Teller mixing of the ground electronic state $1^{1}\Sigma_{g}$ with the lowest excited state of ${}^{1}\Sigma_{u}$ symmetry through the asymmetric σ_{u} vibrational mode.

Keywords: proton transfer, hydrogen bond, pseudo Jahn-Teller effect, potential energy surface, bifluoride anion.

Received: 20 April 2021/ Revised final: 17 May 2021/ Accepted: 21 May 2021