http://cjm.asm.md

http://dx.doi.org/10.19261/cjm.2019.638

SYNTHESIS AND ANTIMICROBIAL EVALUATION OF NOVEL PYRAZOLE, IMIDAZOLE AND PYRIMIDINE DERIVATIVES POSSESSING IMIDAZO[4,5-B]INDOL MOIETY

Nadia Ali Ahmed Elkanzi a,b*, Amira Atef Ghoneim a,c, Hajer Hrichi a,d

^aChemistry Department, College of Science, Jouf University, Sakaka 2014, Saudi Arabia ^bChemistry Department, Faculty of Science, Aswan University, Aswan 81528, Egypt ^cChemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt ^dNational Institute of Applied Sciences and Technology, Carthage University, Centre Urbain Nord, P.B. 676, 1080 Tunis Cedex, Tunisia ^{*}e-mail: kanzi20@yahoo.com</sup>

Abstract. In this study, new pyrazole, imidazole, pyrimidine derivatives having imidazo[4,5-b]indol moiety were successfully synthesized, elucidated by spectroscopic techniques, and evaluated as potential antimicrobial agents. The structure-activity relationship was investigated to obtain a better understanding of the relationship between the chemical structure of the synthesized compounds and their corresponding biological activity. Compounds **2b** and **3b** exhibited potent antibacterial activities against *Bacillus subtilis* bacteria comparable to that of Ampicillin standard. Structure-activity relationship studies revealed that the presence of withdrawing carbonyl group on 5-position of pyrazole moiety **2b**, phenylpyrazole moiety **3b** led to an enhancement in the antibacterial activity of pyrazole derivatives. Furthermore, the presence of carbonyl group on 2-position of the pyrimidine ring of compounds **4a**, **5a** and **6a** has a significant effect on their antibacterial activity against *Bacillus subtilis*. The antifungal studies indicated that compounds **3b**, **4b**, **7** and **9** have comparable antifungal activity to that of standard Amphotericin B against *Candida albicans* and *Aspergillus flavus* fungi.

Keywords: pyrazole, imidazole, pyrimidine, indol, antimicrobial activity.

Received: 13 September 2019/ Revised final: 25 November 2019/ Accepted: 30 November 2019