TOPOLOGICAL ANALYSIS AND FREQUENCY DEPENDENT HYPERPOLARIZABILITY CALCULATIONS OF FDDNP: A DFT STUDY

Keivan Akhtari^{a*}, Keyumars Hassanzadeh^b, Bahareh Fakhraei^c, Ghazal Akhtari^a

^aDepartment of Physics, University of Kurdistan, P.O.Box 416, Sanandaj, Iran ^bYoung Researchers and Elites Club, Islamic Azad University, Sanandaj, Iran ^cFaculty of Physics, Kharazmi University, 49 Mofateh Avenue, Tehran 15719-14911, Iran *e-mail: k1akhtari@yahoo.com; phone: (+98) 8733289430; fax: (+98) 8733247713

Abstract. The topological and first-hyperpolarizability properties of 2-(1-{6-[(2-fluoroethyl)(methyl)amino]-2-naphthyl}ethylidene)malononitrile (FDDNP) were studied using DFTB3LYP method. The static and dynamic electronic (hyper)polarizabilities of conformers were calculated and a simple two-state model was employed to explain the first hyperpolarizability differences in two conformers. The second harmonic generation property was evaluated at the typical wavelengths of Cr:forsterite, Nd:YAG(neodymium-doped yttrium aluminium garnet) and Ti:sapphire lasers to predict the compound conformers potency for second harmonic generation imaging in biological studies.

Keywords: second-harmonic generation, FDDNP, near-infrared, QTAIM.

Received: August 2016/ Revised final: October 2016/ Accepted: October 2016