MIXED-METAL PENTANUCLEAR COMPLEXES OF RUTHENIUM(II,III) CARBOXYLATE AND TETRACYANIDOPLATINATE(II)

Masahiro Mikuriya^{a*}, Kenta Ono^a, Shun Kawauchi^a, Daisuke Yoshioka^a, Ryoji Mitsuhashi^a, Makoto Handa^b

^aDepartment of Applied Chemistry for Environment and Research Center for Coordination Molecule-based Devices, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan
^bDepartment of Chemistry, Interdisciplinary Graduate School of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
*e-mail: junpei@kwansei.ac.jp; phone: (+81 79) 565 8365; fax: (+81 79) 565 9729

Abstract. Mixed-metal complexes constructed from dinuclear ruthenium(II,III) carboxylates and tetracyanidoplatinate(II), $[\{Ru_2(O_2CCH_3)_4\}_2Pt(CN)_4]\cdot 2H_2O$ (1) and $[\{Ru_2\{O_2CC(CH_3)_3\}_4\}_2Pt(CN)_4]\cdot 2H_2O$ (2), were synthesized and characterized by elemental analysis and IR and UV-vis spectroscopies. These data are in accordance with the formulation of the $PtRu_4$ pentanuclear complexes with two lantern-type dinuclear Ru_2 and $Pt(CN)_4$ units. A broad band at near-IR and a distinctive band at visible region (1088 and 443 nm for 1 and 1090 and 446 nm for 2), which can be ascribed to a $\delta(Ru_2)\rightarrow\delta^*(Ru_2)$ and a $\pi(RuO, Ru_2)\rightarrow\pi^*(Ru_2)$ transitions, respectively, were observed in the diffused reflectance spectra. Temperature-dependence of magnetic susceptibilities (4.5-300 K) showed that antiferromagnetic interaction between the two 3/2 spins of the Ru_2 units through tetracyanidoplatinate(II) is weak ($zJ = -0.1 \text{ cm}^{-1}$) with zero-field-splitting values of 45 and 65 cm⁻¹ for 1 and 2, respectively.

Keywords: dinuclear ruthenium(II,III) carboxylate, magnetic property, mixed-metal complex, tetracyanidoplatinate(II).

Received: October 2015/Revised final: October 2015/Accepted: October 2015