DINUCLEAR NICKEL(II) PIVALATE WITH μ-AQUA AND DI-μ-PIVALATO BRIDGES SHOWING A FERROMAGNETIC INTERACTION

Masahiro Mikuriya^{a*}, Melissa Schumacher^a, Chinatsu Kawano^a, Takahiro Akihara^a, Kenta Ono^a, Daisuke Yoshioka^a, Hiroshi Sakiyama^b, and Makoto Handa^c

^aDepartment of Chemistry and Research Center for Coordination Molecule-based Devices, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan

^bDepartment of Material and Biological Chemistry, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560, Japan

^cDepartment of Chemistry, Interdisciplinary Graduate School of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan

*e-mail: junpei@kwansei.ac.jp; phone: (+81 79) 565 83 65; fax: (+81 79) 565 90 77

Abstract. Dinuclear nickel(II) complex, $[Ni_2{O_2CC(CH_3)_3}_4(OH_2){HO_2CC(CH_3)_3}_4]$ (1), was synthesized and characterized by elemental analysis, IR and UV-Vis-NIR spectroscopy, and temperature dependence of magnetic susceptibilities (4.5—300 K). Single-crystal X-ray crystallography revealed a dinuclear core with μ-aqua and di-μ-pivalato bridges having monodentate pivalato and monodentate pivalic acid molecules. Magnetic data analysis showed a ferromagnetic interactions between the two nickel atoms with g = 2.251, J = 2.78 cm⁻¹, D = 3.75 cm⁻¹, and $tip = 184 \times 10^{-6}$ cm³ mol⁻¹; g = 2.253, J = 2.73 cm⁻¹, D = -3.26 cm⁻¹, and $tip = 176 \times 10^{-6}$ cm³ mol⁻¹.

Keywords: nickel complex, dinuclear complex, magnetic property, ferromagnetic interaction.